Experimental evidence for magnetothermal behavior in iron-iron oxide nanostructured systems has been obtained using x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at the Fe L 2,3 edges. The purpose of this study is the determination of the blocked state in these spin-glass-like core-shell systems. A first overview of the magnetic species participating in the magnetic response was obtained by analyzing the XMCD at saturating fields. Also, the XAS revealed the existence of an antiferromagnetic FeO phase, likely located at the interface regions. Finally, measurements were performed at low temperature and intermediate field, where a frozen state below the blocking energy is observed. The results show that the oxide phase spins are oriented at low temperature, while the magnetic spins of the metallic core do not contribute to the XMCD, suggesting that the blocking process mainly involves the magnetic particle superspins rather than the oxide coverage phase.
Correlations between magnetic transition temperatures and the average weighted valence band electron concentration ((s + d) electrons/atom) have led to the development of a phenomenological model that predicts the influence of elemental substitution on the magnetostructural response of bulk B2-ordered Fe(Rh1−xMx) or (Fe1−xMx)Rh alloys (M = transition elements; x < 6 at. %). Validation of this model is provided through synthesis and characterization of FeRh with Cu and Au additions. The data and associated trends indicate that the lattice and electronic free energies are both equally important in driving the magnetostructural transition in the bulk FeRh system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.