DICER1 syndrome is a tumor predisposition syndrome that is associated with up to 30 different neoplastic lesions, usually affecting children and adolescents. Here we identify a group of mesenchymal tumors which is highly associated with DICER1 syndrome, and molecularly distinct from other DICER1-associated tumors. This group of DICER1-associated mesenchymal tumors encompasses multiple well-established clinicopathological tumor entities and can be further divided into three clinically meaningful classes designated “low-grade mesenchymal tumor with DICER1 alteration” (LGMT DICER1), “sarcoma with DICER1 alteration” (SARC DICER1), and primary intracranial sarcoma with DICER1 alteration (PIS DICER1). Our study not only provides a combined approach to classify DICER1-associated neoplasms for improved clinical management but also suggests a role for global hypomethylation and other recurrent molecular events in sarcomatous differentiation in mesenchymal tumors with DICER1 alteration. Our results will facilitate future investigations into prognostication and therapeutic approaches for affected patients.
SWI/SNF (SWItch/Sucrose Non-Fermentable) complex deficiency has been reported in a wide variety of cancers and is often associated with an undifferentiated phenotype. In the gynecologic tract SWI/SNF-deficient cancers are diagnostically challenging and little is known about their cellular origins. Here we show that undifferentiated endometrial carcinoma (UDEC), SMARCA4-deficient uterine sarcoma (SDUS), and ovarian small cell carcinoma, hypercalcemic type (SCCOHT) harbor distinct DNA methylation signatures despite shared morphology and SWI/SNF inactivation. Our results indicate that the cellular context is an important determinant of the epigenetic landscape, even in the setting of core SWI/SNF deficiency, and therefore methylation profiling may represent a useful diagnostic tool in undifferentiated, SWI/SNF-deficient cancers. Furthermore, applying copy number analyses and group-wise differential methylation analyses including endometrioid endometrial carcinomas and extracranial malignant rhabdoid tumors, we uncover analogous molecular features in SDUS and SCCOHT in contrast to UDEC. These results suggest that SDUS and SCCOHT represent chromosomally stable SWI/SNF-deficient cancers of the gynecologic tract, which are within the broader spectrum of malignant rhabdoid tumors.
<div>Abstract<p>Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, <i>CCND1, ERBB2, CDK12</i>, and <i>BRCA1</i>. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution.</p>Significance:<p>These findings identify chromothripsis as a major driving event in human breast cancer.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.