Light triggers the developmental programme in plants that leads to the production of photosynthetically active chloroplasts from non-photosynthetic proplastids. During this chloroplast biogenesis, the photosynthetic apparatus is rapidly assembled, mostly from nuclear-encoded imported proteins, which are synthesized in the cytosol as precursors with cleavable amino-terminal targeting sequences called transit sequences. Protein translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes recognize these transit sequences, leading to the precursors being imported. The Toc complex in the pea consists of three major components, Toc75, Toc34 and Toc159 (formerly termed Toc86). Toc159, which is an integral membrane GTPase, functions as a transit-sequence receptor. Here we show that Arabidopsis thaliana Toc159 (atToc159) is essential for the biogenesis of chloroplasts. In an Arabidopsis mutant (ppi2) that lacks atToc159, photosynthetic proteins that are normally abundant are transcriptionally repressed, and are found in much smaller amounts in the plastids, although ppi2 does not affect either the expression or the import of less abundant non-photosynthetic plastid proteins. These findings indicate that atToc159 is required for the quantitative import of photosynthetic proteins. Two proteins that are related to atToc159 (atToc120 and atToc132) probably help to maintain basal protein import in ppi2, and so constitute components of alternative, atToc159-independent import pathways.
Tetrapyrroles such as chlorophylls and bacteriochlorophylls play a fundamental role in the energy absorption and transduction activities of photosynthetic organisms. Because of these molecules, however, photosynthetic organisms are also prone to photooxidative damage. They had to evolve highly efficient strategies to control tetrapyrrole biosynthesis and to prevent the accumulation of free intermediates that potentially are extremely destructive when illuminated. In higher plants, the metabolic flow of tetrapyrrole biosynthesis is regulated at the step of ␦-aminolevulinic acid synthesis. This regulation previously has been attributed to feedback control of Glu tRNA reductase, the first enzyme committed to tetrapyrrole biosynthesis, by heme. With the recent discovery of chlorophyll intermediates acting as signals that control both nuclear gene activities and tetrapyrrole biosynthesis, it seems likely that heme is not the only regulator of this pathway. A genetic approach was used to identify additional factors involved in the control of tetrapyrrole biosynthesis. In Arabidopsis thaliana, we have found a negative regulator of tetrapyrrole biosynthesis, FLU, which operates independently of heme and seems to selectively affect only the Mg 2؉ branch of tetrapyrrole biosynthesis. The identity of this protein was established by map-based cloning and sequencing the FLU gene. FLU is a nuclear-encoded plastid protein that, after import and processing, becomes tightly associated with plastid membranes. It is unrelated to any of the enzymes known to be involved in tetrapyrrole biosynthesis. Its predicted features suggest that FLU mediates its regulatory effect through interaction with enzymes involved in chlorophyll synthesis.
During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll / pheophytin / pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.
Components of the protein import machinery of the chloroplast were isolated by a procedure in which the import machinery was engaged in vitro with a tagged import substrate under conditions that yielded largely chloroplast envelope-bound import intermediates. Subsequent detergent solubilization of envelope membranes showed that six envelope polypeptides copurified specifically and, apparently, stoichiometrically with the import intermediates. Four of these polypeptides are components of the outer membrane import machinery and are associated with early import intermediates. Two of these polypeptides have been characterized. One is a homolog of the heat shock protein hsp70; the other one is a channel-protein candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.