Development of electrically powered DNA origami nanomachines requires effective means to actuate moving origami parts by externally applied electric fields. We demonstrate how origami nanolevers on an electrode can be manipulated (switched) at high frequency by alternating voltages. Orientation switching is long-time stable and can be induced by applying low voltages of 200 mV. The mechanical response time of a 100 nm long origami lever to an applied voltage step is less than 100 μs, allowing dynamic control of the induced motion. Moreover, through voltage assisted capture, origamis can be immobilized from folding solution without purification, even in the presence of excess staple strands. The results establish a way for interfacing and controlling DNA origamis with standard electronics, and enable their use as moving parts in electro-mechanical nanodevices.
The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.
Dynamic methods of biosensing based on electrical actuation of surface-tethered nanolevers require the use of levers whose movement in ionic liquids is well controllable and stable. In particular, mechanical integrity of the nanolevers in a wide range of ionic strengths will enable to meet the chemical conditions of a large variety of applications where the specific binding of biomolecular analytes is analyzed. Herein, we study the electrically induced switching behavior of different rodlike DNA origami nanolevers and compare to the actuation of simply double-stranded DNA nanolevers. Our measurements reveal a significantly stronger response of the DNA origami to switching of electrode potential, leading to a smaller potential change necessary to actuate the origami and subsequently to a long-term stable movement. Dynamic measurements in buffer solutions with different Mg 2+ contents show that the levers do not disintegrate even at very low ion concentrations and constant switching stress and thus provide stable actuation performance. The latter will pave the way for many new applications without largely restricting application-specific environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.