We investigate the problem of automatic cardiomegaly diagnosis. We approach this by developing classifiers using multimodal data enhanced by two image-derived digital biomarkers, the cardiothoracic ratio (CTR) and the cardiopulmonary area ratio (CPAR). The CTR and CPAR values are estimated using segmentation and detection models. These are then integrated into a multimodal network trained simultaneously on chest radiographs and ICU data (vital sign values, laboratory values and metadata). We compare the predictive power of different data configurations with and without the digital biomarkers. There was a negligible performance difference between the XGBoost model containing only CTR and CPAR (accuracy 81.2%, F1 0.859, AUC 0.810) and black-box models which included full images (ResNet-50: accuracy 81.9%, F1 0.874, AUC 0.767; Multimodal: 81.9%, F1 0.873, AUC 0.768). We concluded that models incorporating domain knowledge-based digital biomarkers CTR and CPAR provide comparable performance to blackbox multimodal approaches with the former providing better clinical explainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.