par Félix Lequen Résumé. -On s'intéresse à la construction d'hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension 2 en prenant des images d'hyperplans réels. On montre que « presque toute » surface K3 contient une infinité d'hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d'un argument dû à Ghys dans le cadre de l'étude de la topologie des feuilles génériques. Abstract (Almost K3 surface contains infinitely many linear Levi-flat hypersurfaces)We investigate the construction of real analytic Levi-flat hypersurfaces in K3 surfaces. By taking images of real hyperplanes, one can construct such hypersurfaces in two-dimensional complex tori. We show that "almost every" K3 surface contains infinitely many Levi-flat hypersurfaces of this type. The proof relies mainly on a recent construction of Koike and Uehara, ideas of Verbitsky on ergodic complex structures, as well as an argument due to Ghys in the P(H 1,1 (X, R)), où q désigne la forme d'intersection de X.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.