IntroductionEvidence behind the recommendations for protein feeding during critical illness is weak. Mechanistic studies are needed to elucidate the effects of amino acid and/or protein supplementation on protein metabolism before larger clinical trials with higher levels of protein feeding are initiated.MethodsWe studied the effects of parenteral amino acid supplementation (equivalent to 1 g/kg/day) over the course of 3 hours on whole-body protein turnover in critically ill patients in the intensive care unit (ICU) during the first week after admission. Patients were studied at baseline during ongoing nutrition and during extra amino acid supplementation. If the patient was still in the ICU 2 to 4 days later, these measurements were repeated. Protein kinetics were measured using continuous stable isotope-labeled phenylalanine and tyrosine infusions.ResultsThirteen patients were studied on the first study occasion only, and seven were studied twice. Parenteral amino acid supplementation significantly improved protein balance on both occasions, from a median of −4 to +7 μmol phenylalanine/kg/hr (P =0.001) on the first study day and from a median of 0 to +12 μmol phenylalanine/kg/hr (P =0.018) on the second study day. The more positive protein balance was attributed to an increased protein synthesis rate, which reached statistical significance during the first measurement (from 58 to 65 μmol phenylalanine/kg/hr; n =13; P =0.007), but not during the second measurement (from 58 to 69 μmol phenylalanine/kg/hr; n =7; P =0.09). Amino acid oxidation rates, estimated by phenylalanine hydroxylation, did not increase during the 3-hour amino acid infusion. A positive correlation (r =0.80; P <0.0001) was observed between total amino acids and/or protein given to the patient and whole-body protein balance.ConclusionExtra parenteral amino acids infused over a 3-hour period improved whole-body protein balance and did not increase amino acid oxidation rates in critically ill patients during the early phase (first week) of critical illness.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0844-6) contains supplementary material, which is available to authorized users.
Whole-body protein turnover and the contribution of dietary protein can be quantified in critically ill patients by using intravenous and enteral stable-isotope Phe tracers. The whole-body protein balance improved during early hypocaloric-hyponitrogenous enteral protein feeding in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.