Abstract. The southern Black Forest was temporarily covered by a ∼1000 km2 large ice cap during the Late Pleistocene. However, during the last glaciation maximum in the Alps the atmospheric circulation over Europe was presumably characterised by the advection of humid air masses from the Mediterranean Sea. As a consequence, the ice cap of the Black Forest was likely in a leeward position due to its location north of the Alps. This raises the question of whether it reached its last maximum extent simultaneously with the glaciers in the Alps. As modern dating techniques have hitherto not been applied to the southern Black Forest, the timing of the last local glaciation maximum remains poorly constrained. As a first step towards an independent regional glacier chronology, we present a critical re-examination of glacial landforms in the area north-west of the highest summit of the Black Forest (Feldberg, 1493 m a.s.l.). It relies on both the analysis of remote sensing data and field mapping. The review of previous studies highlights important disagreements regarding the location of ice-marginal positions and their correlation. In addition, our findings challenge earlier studies on the glaciation of the Black Forest: some previously described ice-marginal positions could not be confirmed, whereas some of the newly identified moraines are described for the first time. This highlights the need for detailed geomorphological investigations prior to the application of geochronological methods. A multi-ridged series of terminal moraines in one of the studied valleys, Sankt Wilhelmer Tal, is proposed as the main target for future dating. Due to discrepancies with earlier studies, future efforts should reinvestigate other key areas related to the last glaciation of the southern Black Forest.
During the Late Pleistocene, an ice cap temporarily rested on the highest summit of the Black Forest, Feldberg, and on the surrounding region. Moraines inside the last glaciation maximum ice extent document subsequent glacial standstills and/or re-advances, but the chronology of the deglaciation remains largely unknown. In Sankt Wilhelmer Tal, moraines were mapped, and suitable moraine boulders were sampled for 10 Be cosmic ray exposure (CRE) dating. Equilibrium line altitudes (ELAs) during moraine formation were reconstructed to evaluate whether these can be used for local stratigraphical correlations. Geomorphological mapping revealed numerous icemarginal positions in the main valley and in two tributary valleys. CRE ages and ELAs indicate two discrete phases of glacial standstills and/or re-advances by 17-16 ka at the latest and no later than 14 ka, respectively. Differing ELAs across the study area preclude the use of ELAs for local stratigraphical correlations. Recalculated 10 Be CRE ages from other localities in Central Europe indicate similar periods of moraine formation, thus raising the question of a common climatic forcing. Additional sets of CRE ages are needed to answer this question. In addition, future studies should concentrate on determining the age of the last glaciation maximum in the Black Forest.
(1) Background: Hazardous substances in surgical smoke that is generated during laser or electrosurgery pose a potential health hazard. In Germany, the Technical Rules for Hazardous Substances (TRGS 525) have included recommendations for appropriate protective measures since 2014. Up to now, no empirical data has been available on the extent to which recommendations have been implemented in practice. (2) Methods: In 2018, 7089 surgeons in hospitals and outpatient practices were invited by email to participate in an online survey. In addition, 219 technical assistants were interviewed. The questionnaire dealt with knowledge of, and attitudes toward, the hazard potential of surgical smoke, as well as the availability and actual use of protective measures. Furthermore, manufacturers and distributors of smoke extraction devices were asked to give their assessment of the development of prevention in recent years. (3) Results: The survey response rate was 5% (surgeons) and 65% (technical assistant staff). Half of all surgeons assumed that there were high health hazards of surgical smoke without taking protective measures. Operating room nurses were more often concerned (88%). Only a few felt properly informed about the topic. The TRGS recommendations had been read by a minority of the respondents. In total, 52% of hospital respondents and 65% of the respondents in outpatient facilities reported any type of special suction system to capture surgical smoke. One-fifth of respondents from hospitals reported that technical measures had improved since the introduction of the TRGS 525. Fifty-one percent of the surgeons in hospitals and 70% of the surgeons in outpatient facilities “mostly” or “always” paid attention to avoiding surgical smoke. The most important reason for non-compliance with recommendations was a lack of problem awareness or thoughtlessness. Twelve industrial interviewees who assessed the situation and the development of prevention in practice largely confirmed the prevention gaps observed; only slight developments were observed in recent years. (4) Conclusions: The low response rate among surgeons and the survey results both indicate a major lack of interest and knowledge. Among other measures, team interventions with advanced training are needed in the future.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.