Quantitative structure–activity relationships (QSAR) are introduced to predict acute oral toxicity (AOT), by using the QuBiLS-MAS (acronym for quadratic, bilinear and N-Linear maps based on graph-theoretic electronic-density matrices and atomic weightings) framework for the molecular encoding. Three training sets were employed to build the models: EPA training set (5931 compounds), EPA-full training set (7413 compounds), and Zhu training set (10 152 compounds). Additionally, the EPA test set (1482 compounds) was used for the validation of the QSAR models built on the EPA training set, while the ProTox (425 compounds) and T3DB (284 compounds) external sets were employed for the assessment of all the models. The k-nearest neighbor, multilayer perceptron, random forest, and support vector machine procedures were employed to build several base (individual) models. The base models with R EPA–training ≥ 0.75 (R = correlation coefficient) and MAEEPA–training ≤ 0.5 (MAE = mean absolute error) were retained to build consensus models. As a result, two consensus models based on the minimum operator and denoted as M19 and M22, as well as a consensus model based on the weighted average operator and denoted as M24, were selected as the best ones for each training set considered. According to the applicability domain (AD) analysis performed, model M19 (built on the EPA training set) has MAEtest–AD = 0.4044, MAEProTox–AD = 0.4067 and MAET3DB–AD = 0.2586 on the EPA test set, ProTox external set, and T3DB external set, respectively; whereas model M22 (built on the EPA-full set) and model M24 (built on the Zhu set) present MAEProTox–AD = 0.3992 and MAET3DB–AD = 0.2286, and MAEProTox–AD = 0.3773 and MAET3DB–AD = 0.2471 on the two external sets accounted for, respectively. These outcomes were compared and statistically validated with respect to 14 QSAR methods (e.g., admetSAR, ProTox-II) from the literature. As a result, model M22 presents the best overall performance. In addition, a retrospective study on 261 withdrawn drugs due to their toxic/side effects was performed, to assess the usefulness of prospectively using the QSAR models proposed in the labeling of chemicals. A comparison with regard to the methods from the literature was also made. As a result, model M22 has the best ability of labeling a compound as toxic according to the globally harmonized system of classification and labeling of chemicals. Therefore, it can be concluded that the models proposed, especially model M22, constitute prominent tools for studying AOT, at providing the best results among all the methods examined. A freely available software was also developed to be used in virtual screening tasks ().
Advances to the distributed, multi-core and fully cross-platform QuBiLS-MIDAS software v2.0 (http://tomocomd.com/qubils-midas) are reported in this article since the v1.0 release. The QuBiLS-MIDAS software is the only one that computes atom-pair and alignment-free geometrical MDs (3D-MDs) from several distance metrics other than the Euclidean distance, as well as alignment-free 3D-MDs that codify structural information regarding the relations among three and four atoms of a molecule. The most recent features added to the QuBiLS-MIDAS software v2.0 are related (a) to the calculation of atomic weightings from indices based on the vertex-degree invariant (e.g., Alikhanidi index); (b) to consider central chirality during the molecular encoding; (c) to use measures based on clustering methods and statistical functions to codify structural information among more than two atoms; (d) to the use of a novel method based on fuzzy membership functions to spherically truncate inter-atomic relations; and (e) to the use of weighted and fuzzy aggregation operators to compute global 3D-MDs according to the importance and/or interrelation of the atoms of a molecule during the molecular encoding. Moreover, a novel module to compute
Peptide-based drugs are promising anticancer candidates due to their biocompatibility and low toxicity. In particular, tumor-homing peptides (THPs) have the ability to bind specifically to cancer cell receptors and tumor vasculature. Despite their potential to develop antitumor drugs, there are few available prediction tools to assist the discovery of new THPs. Two webservers based on machine learning models are currently active, the TumorHPD and the THPep, and more recently the SCMTHP. Herein, a novel method based on network science and similarity searching implemented in the starPep toolbox is presented for THP discovery. The approach leverages from exploring the structural space of THPs with Chemical Space Networks (CSNs) and from applying centrality measures to identify the most relevant and non-redundant THP sequences within the CSN. Such THPs were considered as queries (Qs) for multi-query similarity searches that apply a group fusion (MAX-SIM rule) model. The resulting multi-query similarity searching models (SSMs) were validated with three benchmarking datasets of THPs/non-THPs. The predictions achieved accuracies that ranged from 92.64 to 99.18% and Matthews Correlation Coefficients between 0.894–0.98, outperforming state-of-the-art predictors. The best model was applied to repurpose AMPs from the starPep database as THPs, which were subsequently optimized for the TH activity. Finally, 54 promising THP leads were discovered, and their sequences were analyzed to encounter novel motifs. These results demonstrate the potential of CSNs and multi-query similarity searching for the rapid and accurate identification of THPs.
Antimicrobial peptides (AMPs) have received a great deal of attention given their potential to become a plausible option to fight multi-drug resistant bacteria as well as other pathogens. Quantitative sequence-activity models (QSAMs) have been helpful to discover new AMPs because they allow to explore a large universe of peptide sequences and help reduce the number of wet lab experiments. A main aspect in the building of QSAMs based on shallow learning is to determine an optimal set of protein descriptors (features) required to discriminate between sequences with different antimicrobial activities. These features are generally handcrafted from peptide sequence datasets that are labeled with specific antimicrobial activities. However, recent developments have shown that unsupervised approaches can be used to determine features that outperform human-engineered (handcrafted) features. Thus, knowing which of these two approaches contribute to a better classification of AMPs, it is a fundamental question in order to design more accurate models. Here, we present a systematic and rigorous study to compare both types of features. Experimental outcomes show that non-handcrafted features lead to achieve better performances than handcrafted features. However, the experiments also prove that an improvement in performance is achieved when both types of features are merged. A relevance analysis reveals that non-handcrafted features have higher information content than handcrafted features, while an interaction-based importance analysis reveals that handcrafted features are more important. These findings suggest that there is complementarity between both types of features. Comparisons regarding state-of-the-art deep models show that shallow models yield better performances both when fed with non-handcrafted features alone and when fed with non-handcrafted and handcrafted features together.
A novel spherical truncation method, based on fuzzy membership functions, is introduced to truncate interatomic (or interaminoacid) relations according to smoothing values computed from fuzzy membership degrees. In this method, the molecules are circumscribed into a sphere, so that the geometric centers of the molecules are the centers of the spheres. The fuzzy membership degree of each atom (or aminoacid) is computed from its distance with respect to the geometric center of the molecule, by using a fuzzy membership function. So, the smoothing value to be applied in the truncation of a relation (or interaction) is computed by averaging the fuzzy membership degrees of the atoms (or aminoacids) involved in the relation. This truncation method is rather different from the existing ones, at considering the geometric center for the whole molecule and not only for atom‐groups, as well as for using fuzzy membership functions to compute the smoothing values. A variability study on a set comprised of 20,469 compounds (15,050 drug‐like compounds, 2994 drugs approved, 880 natural products from African sources, and 1545 plant‐derived natural compounds exhibiting anti‐cancerous activity) demonstrated that the truncation method proposed allows to determine molecular encodings with better ability for discriminating among structurally different molecules than the encodings obtained without applying truncation or applying non‐fuzzy truncation functions. Moreover, a principal component analysis revealed that orthogonal chemical information of the molecules is encoded by using the method proposed. Lastly, a modeling study proved that the truncation method improves the modeling ability of existing geometric molecular descriptors, at allowing to develop more robust models than the ones built only using non‐truncated descriptors. In this sense, a comparison and statistical assessment were performed on eight chemical datasets. As a result, the models based on the truncated molecular encodings yielded statistically better results than 12 procedures considered from the literature. It can thus be stated that the proposed truncation method is a relevant strategy for obtaining better molecular encodings, which will be ultimately useful in enhancing the modeling ability of existing encodings both on small‐to‐medium size molecules and biomacromolecules. © 2019 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.