An experimental and theoretical study of the base-stabilized disilene 1 is reported, which forms at low temperatures in the disproportionation reaction of Si2 Cl6 or neo-Si5 Cl12 with equimolar amounts of NMe2 Et. Single-crystal X-ray diffraction and quantum-chemical bonding analysis disclose an unprecedented structure in silicon chemistry featuring a dative Si→Si single bond between two silylene moieties, Me2 EtN→SiCl2 →Si(SiCl3 )2 . The central ambiphilic SiCl2 group is linked by dative bonds to the amine donor and the bis(trichlorosilyl)silylene acceptor, which leads to push-pull stabilization. Based on experimental and theoretical examinations a formation mechanism is presented that involves an autocatalytic reaction of the intermediately formed anion Si(SiCl3 )3 (-) with neo-Si5 Cl12 to yield 1.
Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling of (t)BuGeH3 to form ((t)BuGeH2)2 (85% yield) and H2.
A series of group 8 transition metal complexes of new tridentate phosphine ligands with Fe, Ru, and Os were prepared. The new complexes were characterized by multinuclear NMR spectroscopy and X‐ray crystallography.
DedicatedtoProf. Nino Russo on theoccasiono fhis 70th birthday.Abstract: Ac ombined experimentala nd theoretical study of the high-temperature reactiono fS iCl 4 and elemental silicon is presented. The nature and reactivity of the product formed upon rapid coolingo ft he gaseous reactionm ixture is investigated by comparison with the defined model compounds cyclo-Si 5 Cl 10 , n-Si 5 Cl 12 and n-Si 4 Cl 10 .ADFT assessment provides mechanistic insight into the oligosilane formation. Experimental 29Si NMR investigations, supported by quantum-chemical 29 Si NMR calculations, consistently show that the reactionp roduct is composed of discrete molecular perchlorinated oligosilanes. Low-temperature chlorination is an unexpectedly selective means for the transformation of cyclosilanes to acyclic speciesb ye ndocyclic SiÀSi bond cleavage, and we provide am echanistic rationalization for this observation. In contrast to the raw material, the product obtained after low-temperature chlorination represents an efficient source of neo-Si 5 Cl 12 or the amine-stabilizedd isilene EtMe 2 N·SiCl 2 Si(SiCl 3 ) 2 through reactionwith aliphatic amines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.