The operation of heating, cooling and air-conditioning (HVAC) in buildings often adheres to fixed time schedules. However, associating HVAC schedules to the occupant’s presence patterns can save a significant amount of energy, reducing operation periods to the required minimum. Therefore, automated occupancy estimation provides valuable input to efficient building control strategies. This work discusses the validation and adjustment for two carbon dioxide-based occupancy detection algorithms based on data from ten multi-person offices. Both methods are based on a carbon dioxide mass balance equation. However, they follow two different philosophies. One model is deterministic and includes a more detailed representation of the system, whereas the other model includes stochastic elements and was based on fewer assumptions. Both approaches show similar and promising results. The advantages and drawbacks of each method are reviewed. Furthermore, adjustments of the algorithms to the given conditions and possible future improvements are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.