Magnetoresistive (MR) sensors and sensor systems are used in a large variety of applications in the field of industrial automation, automotive business, aeronautic industries, and instrumentation. Different MR sensor technologies like anisotropic magnetoresistive, giant magnetoresistive, and tunnel magnetoresistive sensors show strongly varying properties in terms of magnetoresistive effect, response to magnetic fields, achievable element miniaturization, manufacturing effort, and signal-to-noise ratio. Very few data have been reported so far on the comparison of noise performance for different sensor models and technologies, especially including the temperature dependence of their characteristics. In this paper, a stand-alone measurement setup is presented that allows a comprehensive characterization of MR sensors including sensitivity and noise over a wide range of temperatures.
In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.
ZusammenfassungDie Veröffentlichung stellt ein AMR-Magnetometer vor, welches den intrinsischen Sensoroffset und den Offsetdrift mit Hilfe von Modulationsverfahren unterdrückt und trotzdem eine sehr hohe Frequenzbandbreite von 100 kHz erreicht. Dieses Magnetometer wurde in ein Gehäuse integriert und besitzt zwei Achsen, welche über Sensorarme herausgeführt sind. Zur Charakterisierung werden Werte wie Empfindlichkeit, Frequenzbandbreite, Rauschen und zeitlicher Drift präsentiert und diskutiert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.