Prosimians (tarsiers and strepsirrhini) represent the basal lineages in primates and have a close bearing on the origin of primates. Although major lineages among anthropoidea (humans, apes and monkeys) are well represented by complete mitochondrial DNA (mtDNA) sequence data, only one complete mtDNA sequence from a representative of each of the infraorders in prosimians has been described until quite recently, and therefore we newly determined complete mtDNA sequences from 5 lemurs, 4 lorises, one tarsier and one platyrrhini. These sequences were provided to phylogenetic analyses in combination with the sequences from the 15 primates species reported to the database. The position of tarsiers among primates could not be resolved by the maximum likelihood (ML) and neighbor-joining (NJ) analyses with several data sets. As to the position of tarsiers, any of the three alternative topologies (monophyly of haplorhini, monophyly of prosimians, and tarsiers being basal in primates) was not rejected at the significance level of 5%, neither at the nucleotide nor at the amino acid level. In addition, the significant variations of C and T compositions were observed across primates species. Furthermore, we used AGY data sets for phylogenetic analyses in order to remove the effect of different C/T composition bias across species. The analyses of AGY data sets provided a medium support for the monophyly of haplorhini, which might have been screened by the variation in base composition of mtDNA across species. To estimates the speciation dates within primates, we analyzed the amino acid sequences of mt-proteins with a Bayesian method of Thorne and Kishino. Divergence dates were estimated as follows for the crown groups: about 35.4 million years ago (mya) for lorisiformes, 55.3 mya for lemuriformes, 64.5 mya for strepsirrhini, 70.1 mya for haplorhini and 76.0 mya for primates. Furthermore, we reexamined the biogeographic scenarios which have been proposed for the origin of strepsirrhini (lemuriformes and lorisiformes) and for the dispersal of the lemuriformes and lorisiformes.
The lemurs of Madagascar (Primates: Lemuriformes) are a monophyletic group that has lived in isolation from other primates for about 50 million years. Lemurs have diversified into species with diverse daily activity patterns and correspondingly different visual adaptations. We assessed the arrangements of retinal cone and rod photoreceptors in six nocturnal, three cathemeral and two diurnal lemur species and quantified different parameters in six of the species. The analysis revealed lower cone densities and higher rod densities in the nocturnal than in the cathemeral and diurnal species. The photoreceptor densities in the diurnal Propithecus verreauxi indicate a less "diurnal" retina than found in other diurnal primates. Immunolabeling for cone opsins showed the presence of both middle-to-longwave sensitive (M/L) and shortwave sensitive (S) cones in most species, indicating at least dichromatic color vision. S cones were absent in Allocebus trichotis and Cheirogaleus medius, indicating cone monochromacy. In the Microcebus species, the S cones had an inverse topography with very low densities in the central retina and highest densities in the peripheral retina. The S cones in the other species and the M/L cones in all species had a conventional topography with peak densities in the central area. With the exception of the cathemeral Eulemur species, the eyes of all studied taxa, including the diurnal Propithecus, possessed a tapetum lucidum, a feature only found among nocturnal and crepuscular mammals.
A new species of Myzopoda (Myzopodidae), an endemic family to Madagascar that was previously considered to be monospecific, is described. This new species, M. schliemanni, occurs in the dry western forests of the island and is notably different in pelage coloration, external measurements and cranial characters from M. aurita, the previously described species, from the humid eastern forests. Aspects of the biogeography of Myzopoda and its apparent close association with the plant Ravenala madagascariensis (Family Strelitziaceae) are discussed in light of possible speciation mechanisms that gave rise to eastern and western species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.