Reflecting a global trend, freshwater wetlands in Madagascar have received little conservation or research attention. Madagascar is a global conservation priority due to its high level of species endemism but most work has focused on protecting forests. For the first time, we investigated the state of wetlands across the country to determine the effects of human disturbance. We conducted a rapid survey of 37 wetlands, using waterbirds and benthic invertebrates as ecological indicators. We recorded nine variables relating to human disturbance, revealing widespread wetland destruction. Principal Components Analysis reduced the nine variables to a single Principal Component (PC) that explained 50% of the dataset variance, demonstrating that different forms of human disturbance are ubiquitous and inseparable. The disturbance PC provides an index of how pristine a lake is and in Generalized Linear Models (GLMs) was significantly inversely related to the number of waterbird species present and the density of Chironomidae. The disturbance PC was estimated for every wetland in a GIS-derived dataset of wetland locations in Madagascar, giving a country-wide frequency distribution of disturbance. To validate the estimated PC values, we used the GLMs to predict the number of endemic bird species at an independent sample of 22 lakes. The predicted values correlated with the observed number of species, demonstrating that our procedure can identify lakes with high biodiversity value. The disturbance PC provides a convenient method for ranking sites, and a country-wide ranking demonstrates that the only near-pristine lakes in Madagascar are small sites that have been preserved by remoteness from human activity and not conservation management. The strategy of conserving high biodiversity remnants is insufficient because existing remnants suffer some degree of degradation and only support small populations of threatened species. Large-scale restoration of degraded wetlands is required for the long-term conservation of Madagascar’s freshwater biodiversity.
SummaryOne of the rarest birds in the world, the Madagascar Pochard Aythya innotata was thought to be extinct until a small population was found in 2006. Little is known about this diving duck as it had not been studied prior to its decline and disappearance. Its rediscovery provided the opportunity to study this species in the wild for the first time and to assess the viability of this last remaining population. The population is small, fluctuating around 25 individuals, and mainly utilises two small volcanic lakes in the far north of Madagascar. Nesting occurs on only one of these lakes, Matsaborimena. Nest success (76% in 2007–2008) and hatching success (89% in 2007–2008) are both comparable to other Aythya species, but fledging success (4% in 2011–2012) is extremely low. Duckling mortality rates peak between 14 and 21 days old. We propose that starvation is the major cause of duckling mortality. Examination of faecal samples and stable isotope analysis of feathers and potential food items provide evidence that adult pochards are insectivorous, favouring caddis fly larvae. Macroinvertebrate density in the benthos of Matsaborimena is low. Adults spend 38% of daylight hours foraging, mainly in the shallowest water. However Matsaborimena is steep-sided and has no areas shallow enough for diving ducklings to feed. We conclude that these lakes are not good breeding habitat for this species. The Madagascar Pochard’s persistence here and not at other sites is probably due to a lack of the human-induced habitat degradation that has impacted many other wetlands in Madagascar.
Tropical freshwater wetlands are subject to multiple stressors but there is little information on which stressors cause wetland degradation. Increased turbidity is considered a major cause of degradation, but the effects of introduced fish are often overlooked. Tilapia are frequently introduced in tropical regions, especially species in the genus Oreochromis, and the ecological effects of introducing tilapia are poorly studied. We used enclosure experiments in a shallow lake in Madagascar to assess the effects of tilapia and turbidity on macrophytes and benthic invertebrates, and to test management interventions designed to increase both. Tilapia at high and low stocking densities had negative effects on survival of Charophyte algae and water lilies, but no direct effect on benthic invertebrate abundance or diversity. Invertebrate abundance was highest on submerged Charophytes, so herbivory by tilapia indirectly affected invertebrates. Turbidity affected Charophyte survival, and abundance and diversity of non-Dipteran insects. As a complication, tilapia may increase turbidity by re-suspending the lake sediment. Our results suggest that herbivory by tilapia is a plausible cause of the removal of macrophytes from the lake and an impediment to their re-establishment. Tilapia are widely introduced in tropical areas as a food resource. Our results demonstrate serious consequences to these introductions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.