Abstract. Rapidly evolving floods are rare but powerful drivers of landscape reorganisation that have severe and long-lasting impacts on both the functions of a landscape’s subsystems and the affected society. The July 2021 flood that particularly hit several river catchments of the Eifel region in western Germany and Belgium was a drastic example. While media and scientists highlighted the meteorological and hydrological aspects of this flood, it was not just the rising water levels in the main valleys that posed a hazard, caused damage, and drove environmental reorganisation. Instead, the concurrent coupling of landscape elements and the wood, sediment, and debris carried by the fast-flowing water made this flood so devastating and difficult to predict. Because more intense floods are able to interact with more landscape components, they at times reveal rare non-linear feedbacks, which may be hidden during smaller events due to their high thresholds of initiation. Here, we briefly review the boundary conditions of the 14–15 July 2021 flood and discuss the emerging features that made this event different from previous floods. We identify hillslope processes, aspects of debris mobilisation, the legacy of sustained human land use, and emerging process connections and feedbacks as critical non-hydrological dimensions of the flood. With this landscape scale perspective, we develop requirements for improved future event anticipation, mitigation, and fundamental system understanding.
Abstract. Assessing the relationship between the intensity, duration, and frequency (IDF) of extreme precipitation is required for the design of water management systems. However, when modeling sub-daily precipitation extremes, there are commonly only short observation time series available. This problem can be overcome by applying the duration-dependent formulation of the generalized extreme value (GEV) distribution which fits an IDF model with a range of durations simultaneously. The originally proposed duration-dependent GEV model exhibits a power-law-like behavior of the quantiles and takes care of a deviation from this scaling relation (curvature) for sub-hourly durations (Koutsoyiannis et al., 1998). We suggest that a more flexible model might be required to model a wide range of durations (1 min to 5 d). Therefore, we extend the model with the following two features: (i) different slopes for different quantiles (multiscaling) and (ii) the deviation from the power law for large durations (flattening), which is newly introduced in this study. Based on the quantile skill score, we investigate the performance of the resulting flexible model with respect to the benefit of the individual features (curvature, multiscaling, and flattening) with simulated and empirical data. We provide detailed information on the duration and probability ranges for which specific features or a systematic combination of features leads to improvements for stations in a case study area in the Wupper catchment (Germany). Our results show that allowing curvature or multiscaling improves the model only for very short or long durations, respectively, but leads to disadvantages in modeling the other duration ranges. In contrast, allowing flattening on average leads to an improvement for medium durations between 1 h and 1 d, without affecting other duration regimes. Overall, the new parametric form offers a flexible and enhanced performance model for consistently describing IDF relations over a wide range of durations, which has not been done before as most existing studies focus on durations longer than 1 h or day and do not address the deviation from the power law for very long durations (2–5 d).
Abstract. We model monthly precipitation maxima at 132 stations in Germany for a wide range of durations from 1 min to about 6 d using a duration-dependent generalized extreme value (d-GEV) distribution with monthly varying parameters. This allows for the estimation of both monthly and annual intensity–duration–frequency (IDF) curves: (1) the monthly IDF curves of the summer months exhibit a more rapid decrease of intensity with duration, as well as higher intensities for short durations than the IDF curves for the remaining months of the year. Thus, when short convective extreme events occur, they are very likely to occur in summer everywhere in Germany. In contrast, extreme events with a duration of several hours up to about 1 d are conditionally more likely to occur within a longer period or even spread throughout the whole year, depending on the station. There are major differences within Germany with respect to the months in which long-lasting stratiform extreme events are more likely to occur. At some stations the IDF curves (for a given quantile) for different months intersect. The meteorological interpretation of this intersection is that the season in which a certain extreme event is most likely to occur shifts from summer towards autumn or winter for longer durations. (2) We compare the annual IDF curves resulting from the monthly model with those estimated conventionally, that is, based on modeling annual maxima. We find that adding information in the form of smooth variations during the year leads to a considerable reduction of uncertainties. We additionally observe that at some stations, the annual IDF curves obtained by modeling monthly maxima deviate from the assumption of scale invariance, resulting in a flattening in the slope of the IDF curves for long durations.
Abstract. Assessing the relationship between intensity, duration and frequency (IDF) of extreme precipitation is required for the design of water management systems. However, when modeling sub-daily precipitation extremes, there are commonly only short observation time series available. This problem can be overcome by applying the duration-dependent formulation of the generalized extreme value (GEV) distribution which fits an IDF model with a range of durations simultaneously. The originally proposed duration-dependent GEV model exhibits a power-law like behaviour of the quantiles and takes care of a deviation from this scaling relation (curvature) for sub-hourly durations (Koutsoyiannis et al., 1998). We suggest that a more flexible model might be required to model a wide range of durations (1 min to 5 days). Therefore, we extend the model with two features: i) different slopes for different quantiles (multiscaling) and ii), newly introduced in this study, the deviation from the power-law for large durations (flattening). Based on the quantile skill score, we investigate the performance of the resulting flexible model with respect to the benefit of the individual features (curvature, multiscaling, flattening) with simulated and empirical data. We provide detailed information on the duration and probability ranges for which specific features or a systematic combination of features leads to improvements for stations in a case study area in the Wupper catchment (Germany). Our results show that allowing curvature or multiscaling improves the model only for very short or long durations, respectively, but leads to disadvantages in modeling the other duration ranges. In contrast, allowing flattening on average leads to an improvement for medium durations between 1 hour and 1 day without affecting other duration regimes. Overall, the new parametric form offers a flexible and performant model for consistently describing IDF relations over a wide range of durations, which has not been done before as most existing studies focus on durations longer than one hour or day and do not address the deviation from the power law for very long durations (2–5 days).
Abstract. Rapidly evolving floods are rare but powerful drivers of landscape reorganisation that have severe and long lasting impacts on both the functions of a landscape’s subsystems and the affected society. The July 2021 flood that particularly hit several river catchments of the Eifel region in West Germany and Belgium was a drastic example. While media and scientists highlighted the meteorological and hydrological aspects of this flood, it was not just the rising water levels in the main valleys that posed a hazard, caused damage, and drove environmental reorganisation. Instead, the concurrent coupling of landscape elements and the wood, sediment and debris carried by the fast-flowing water made this flood so devastating and difficult to predict. Because more intense floods are able to interact with more landscape components, they at times reveal rare non-linear feedbacks, which may be hidden during smaller events due to their high thresholds of initiation. Here, we briefly review the boundary conditions of the 14–15 July 2021 flood and discuss the emerging features that made this event different from previous floods. We identify hillslope processes, aspects of debris mobilisation, the legacy of sustained human land use, and emerging process connections and feedbacks as critical non-hydrological dimensions of the flood. With this landscape scale perspective, we develop requirements for improved future event anticipation, mitigation and fundamental system understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.