The picosecond excited-state dynamics of several derivatives have been investigated using high photon energy excitation combined with picosecond luminescence detection. Instrument response-limited fluorescence (tau(1) approximately equal to 3-5 ps) at 500 nm was observed for all of the complexes, while longer-lived emission (tau(2) > 50 ps), similar in energy, was observed for only some of the complexes. Interestingly, the presence of tau(2) required substitution at the 4,4-positions of the bipyridine ligands and D(3) symmetry for the complex; only the 4,4-substituted homoleptic complexes exhibited tau(2). On the basis of previous assignments of the ultrafast dynamics measured for Ru(bpy)(2+)3 and Ru(dmb)(2+)3, tau(2) has been tentatively ascribed to relaxation from higher electronic or vibrational levels in the triplet manifold having slightly more triplet character than the state responsible for tau(1). However, given that the kinetics for these transition metal complexes are highly dependent on both pump and probe wavelengths and that there is considerable interest in utilizing such complexes for electron transfer in the nonergodic limit, further characterization of the state giving rise to tau(2) is warranted.
The picosecond excited state dynamics of a series of homoleptic Ru(II) polypyridyl complexes (where LL = bpy, dmb, dmeob, dfmb, or dttb) have been investigated in aqueous solution at room temperature using femtosecond transient absorption spectroscopy with high photon energy excitation. All of the complexes studied produced similar spectroscopic signatures: a near-instantaneous bleach centered at 470–500 nm corresponding to the static absorption spectrum, as well as an intense absorption (475–650 nm) that decayed within the instrument response function (IRF) to form a broad, low-level absorption extending from 500–650 nm. Detailed analyses of both kinetic and spectral parameters by singular value decomposition (SVD) indicate that the excited state difference spectra contain contributions from at least three distinguishable species that have been assigned as ligand-based π* ← π* and ligand-to-metal-charge-transfer (LMCT) transitions concomitant with the loss of the ground state metal-to-ligand-charge-transfer (MLCT) transition. Kinetic information extracted at 530 nm (an optical marker for the fully intraligand-delocalized 3MLCT state) or 660 nm (LMCT transitions) appear to be biphasic in some cases with the amplitude of the IRF-limited component becoming larger with shorter wavelength excitation. Further, rise dynamics were observed at redder probe wavelengths for Ru(bpy)32+ and Ru(dttb)32+. These observations are different from those obtained using lower photon energy excitation and show that excitation wavelength strongly influences the early photophysical events in these Ru(II) complexes.Key words: ruthenium, photophysics, lasers, transient absorption spectroscopy, excited states, singular value decomposition (SVD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.