Eye tracking (ET) has shown to reveal the wearer’s cognitive processes using the measurement of the central point of foveal vision. However, traditional ET evaluation methods have not been able to take into account the wearers’ use of the peripheral field of vision. We propose an algorithmic enhancement to a state-of-the-art ET analysis method, the Object-Gaze Distance (OGD), which additionally allows the quantification of near-peripheral gaze behavior in complex real-world environments. The algorithm uses machine learning for area of interest (AOI) detection and computes the minimal 2D Euclidean pixel distance to the gaze point, creating a continuous gaze-based time-series. Based on an evaluation of two AOIs in a real surgical procedure, the results show that a considerable increase of interpretable fixation data from 23.8 % to 78.3 % of AOI screw and from 4.5 % to 67.2 % of AOI screwdriver was achieved, when incorporating the near-peripheral field of vision. Additionally, the evaluation of a multi-OGD time series representation has shown the potential to reveal novel gaze patterns, which may provide a more accurate depiction of human gaze behavior in multi-object environments.
Eye tracking (ET) technology is increasingly utilized to quantify visual behavior in the study of the development of domain-specific expertise. However, the identification and measurement of distinct gaze patterns using traditional ET metrics has been challenging, and the insights gained shown to be inconclusive about the nature of expert gaze behavior. In this article, we introduce an algorithmic approach for the extraction of object-related gaze sequences and determine task-related expertise by investigating the development of gaze sequence patterns during a multi-trial study of a simplified airplane assembly task. We demonstrate the algorithm in a study where novice (n = 28) and expert (n = 2) eye movements were recorded in successive trials (n = 8), allowing us to verify whether similar patterns develop with increasing expertise. In the proposed approach, AOI sequences were transformed to string representation and processed using the k-mer method, a well-known method from the field of computational biology. Our results for expertise development suggest that basic tendencies are visible in traditional ET metrics, such as the fixation duration, but are much more evident for k-mers of k > 2. With increased on-task experience, the appearance of expert k-mer patterns in novice gaze sequences was shown to increase significantly (p < 0.001). The results illustrate that the multi-trial k-mer approach is suitable for revealing specific cognitive processes and can quantify learning progress using gaze patterns that include both spatial and temporal information, which could provide a valuable tool for novice training and expert assessment.
Figure 1: Workflow of the four major steps for the calculation of a peripheral vision-based attention measure, the visual attention index (VAI). ( 1) The given multi-object handling task defines the objects of interest (OOIs). ( 2) Mobile eye-tracking data is recorded and the vision areas are quantified. (3) Object detection is conducted using Mask R-CNN and the distances of the gaze center to each OOI is calculated. (4) The VAI, which considers both spatial and temporal information, is computed for each task and visualized using a radar graph for attention analysis.
Deep learning models have shown remarkable performances in egocentric video-based action recognition (EAR), but rely heavily on a large quantity of training data. In specific applications with only limited data available, eye movement data may provide additional valuable sensory information to achieve accurate classification performances. However, little is known about the effectiveness of gaze data as a modality for egocentric action recognition. We, therefore, propose the new Peripheral Vision-Based HMM (PVHMM) classification framework, which utilizes context-rich and object-related gaze features for the detection of human action sequences. Gaze information is quantified using two features, the object-of-interest hit and the object–gaze distance, and human action recognition is achieved by employing a hidden Markov model. The classification performance of the framework is tested and validated on a safety-critical medical device handling task sequence involving seven distinct action classes, using 43 mobile eye tracking recordings. The robustness of the approach is evaluated using the addition of Gaussian noise. Finally, the results are then compared to the performance of a VGG-16 model. The gaze-enhanced PVHMM achieves high classification performances in the investigated medical procedure task, surpassing the purely image-based classification model. Consequently, this gaze-enhanced EAR approach shows the potential for the implementation in action sequence-dependent real-world applications, such as surgical training, performance assessment, or medical procedural tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.