It is widely known that dielectric elastomer (DE) material exhibits a strongly rate-dependent hysteresis in their stress-stretch response. It is experimentally observed, however, that the hysteresis of some DE materials (e.g., silicone) behaves as practically rate-independent when operating in the sub-Hz range. Despite this fact, the investigation and modeling of rate-independent hysteretic effects in DEs has received much less attention in the literature, compared to the rate-dependent ones. In this paper, we propose a new lumped-parameter dynamic model capable of describing a stress-stretch DE hysteresis with both rate-dependent and rate-independent effects. The model is grounded on a physics-based approach, combining classic thermodynamically-consistent modeling of DE large deformations and electro-mechanical coupling with a new energy-based Maxwell-Lion description of the hysteretic process. After presenting the theory, the model is validated by means of experiments conducted on silicone-based rolled DE actuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.