sonAIR is a recently developed aircraft noise simulation model designed for single flight simulation while still being applicable for calculation of entire airport scenarios. This paper presents a rigorous validation exercise, wherein roughly 20’000 single flights were simulated using the 22 currently available sonAIR emission models of turbofan aircraft and compared against noise measurements. The measurements were recorded with the noise monitoring terminals at Zurich and Geneva airport, Switzerland, and with additional microphones installed by the author’s institution. Data from 22 measurement positions were analyzed, covering all departure and approach routes at distances from 1.8 to 53 kilometers from the airports. sonAIR was found to be accurate for departures and approaches under different operating conditions and aircraft configuration. The mean overall differences between simulation and measurements were well below ±1 dB in terms of noise event levels, with standard deviations of ±1.7 dB respectively ±2.4 dB, depending on the model type. A few aircraft types that displayed larger deviations are discussed individually. A sensitivity analysis on the input data found the quality and level of detail of the land cover data to be critical for the simulation accuracy. Changes in other input data such as atmospheric profiles and buildings had non-significant impacts.
Air, road, and tire temperatures substantially affect tire/road noise emission. For measuring purposes, one would like to normalize measurements to a reference temperature by means of a reliable correction procedure. Current studies show that temperature effects remain an important source of uncertainty in tire/road noise measurements and tire testing, even after applying the correction terms provided in the various standards. This seems to be the case for the measurement methods used in OBSI, CPX, SPB, and various regulations or directives based on ECE R117. This paper examines a new dataset consisting of 7.5 million temperature measurements aimed at contributing to a better understanding of temperature effects and the ways they relate to air, road, and tire temperatures. It is assumed that tire temperatures are the most relevant for noise corrections; therefore, special studies are made for how tire temperatures relate to air and road (test surface) temperatures. A profound analysis is provided on how these relationships vary over different day times, seasons, and climatic regions. Based on this analysis, the authors provide suggestions for improvement of temperature normalization in current tire/road noise and tire testing standards. Special considerations are devoted to measurements on test tracks having ISO 10844 reference surfaces.
Large scale noise exposure modelling is used in epidemiological research projects as well as for noise mapping and strategic action planning. Such calculations should always be accompanied by an assessment of uncertainty, on the one hand to check for systematic deviations and on the other hand to investigate the sources of uncertainty to address them in future studies. Within the SiRENE (Short and Long Term Effects of Transportation Noise Exposure) project, a large scale nationwide assessment of Switzerland's road, railway, and aircraft noise exposure was conducted for the year 2011. In the present follow-up study, we equipped 180 sleeping and/or living room windows with sound level meters for one week. The resulting dataset was used to validate noise exposure modelling within SiRENE. For the noise metric L DEN the comparison revealed a difference of 1.6 ± 5 dB(A) when taking all measurements into account. After removing measurement sites with noise mitigation measures not considered in the modelling, the difference to the calculation was reduced to 0.5 ± 4 dB(A). As major sources of uncertainty, the position accuracy and topicality of infrastructure and building geometries, the traffic modelling as well as the acoustic source and propagation models were identified.
Tyre/road noise is the dominant component of overall vehicle noise at medium and high speeds and for cars even at low speeds. Consequently, road traffic noise can be reduced with the proliferation of quieter tyres. One way to achieve this is to give the tyre noise label greater attention among tyre and transportation consumers. Hence, the STEER project has evaluated the relevance and performance of the noise part of the European tyre label, looking at how it works in practice, analyzing its uncertainties and suggesting how it can be improved. Its main finding is that the uncertainties in the measurement of noise level for the label are too high to be acceptable. This paper focusses on the solutions offered by STEER for an improved tyre label. With four main improvements, the overall uncertainty of the current procedure can be halved. A few possible future strategies to increase the market share of quieter tyres have been analyzed and their effects quantified. If the tyre noise label is improved and the market share of quieter tyres can be increased as project STEER proposes, area-wide reductions of up to 3 dB in road traffic noise emissions compared to the present situation are possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.