This paper was selected as Featured
ARTICLES YOU MAY BE INTERESTED INEnhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy Review of Scientific Instruments 91, 063703 (2020);
Laser powder bed fusion (LPBF) is a metal additive manufacturing technology, which enables the manufacturing of complex geometries for various metals and alloys. Herein, parts made from commercially pure titanium are studied using in situ synchrotron radiation diffraction experiments. Both the phase transformation and the internal stress buildup are evaluated depending on the processing parameters. For this purpose, evaluation approaches for both temperature and internal stresses from in situ diffraction patterns are presented. Four different parameter sets with varying energy inputs and laser scanning strategies are investigated. A combination of a low laser power and scanning speed leads to a more homogeneous stress distribution in the observed gauge volumes. The results show that the phase transformation is triggered during the primary melting and solidification of the powder and subsurface layers. Furthermore, the stress buildup as a function of the part height during the manufacturing process is clarified. A stress maximum is formed below the part surface, extending into deeper layers with increasing laser power. A temperature evaluation approach for absolute internal stresses shows that directional stresses decrease sharply during laser impact and reach their previous magnitude again during cooling.
Laser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy.
Graphical Abstract
The high flux combined with the high energy of the monochromatic synchrotron radiation available at modern synchrotron facilities offers vast possibilities for fundamental research on metal processing technologies. Especially in the case of laser powder bed fusion (LPBF), an additive manufacturing technology for the manufacturing of complex-shaped metallic parts, in situ methods are necessary to understand the highly dynamic thermal, mechanical, and metallurgical processes involved in the creation of the parts. At PETRA III, Deutsches Elektronen-Synchrotron, a customized LPBF system featuring all essential functions of an industrial LPBF system, is used for in situ x-ray diffraction research. Three use cases with different experimental setups and research questions are presented to demonstrate research opportunities. First, the influence of substrate pre-heating and a complex scan pattern on the strain and internal stress progression during the manufacturing of Inconel 625 parts is investigated. Second, a study on the nickel-base superalloy CMSX-4 reveals the formation and dissolution of γ′ precipitates depending on the scan pattern in different part locations. Third, phase transitions during melting and solidification of an intermetallic γ-TiAl based alloy are examined, and the advantages of using thin platelet-shaped specimens to resolve the phase components are discussed. The presented cases give an overview of in situ x-ray diffraction experiments at PETRA III for research on the LPBF technology and provide information on specific experimental procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.