BackgroundWhole genome sequencing has become fast, accurate, and cheap, paving the way towards the large-scale collection and processing of human genome data. Unfortunately, this dawning genome era does not only promise tremendous advances in biomedical research but also causes unprecedented privacy risks for the many. Handling storage and processing of large genome datasets through cloud services greatly aggravates these concerns. Current research efforts thus investigate the use of strong cryptographic methods and protocols to implement privacy-preserving genomic computations.MethodsWe propose Fhe-Bloom and Phe-Bloom, two efficient approaches for genetic disease testing using homomorphically encrypted Bloom filters. Both approaches allow the data owner to securely outsource storage and computation to an untrusted cloud. Fhe-Bloom is fully secure in the semi-honest model while Phe-Bloom slightly relaxes security guarantees in a trade-off for highly improved performance.ResultsWe implement and evaluate both approaches on a large dataset of up to 50 patient genomes each with up to 1000000 variations (single nucleotide polymorphisms). For both implementations, overheads scale linearly in the number of patients and variations, while Phe-Bloom is faster by at least three orders of magnitude. For example, testing disease susceptibility of 50 patients with 100000 variations requires only a total of 308.31 s (σ=8.73 s) with our first approach and a mere 0.07 s (σ=0.00 s) with the second. We additionally discuss security guarantees of both approaches and their limitations as well as possible extensions towards more complex query types, e.g., fuzzy or range queries.ConclusionsBoth approaches handle practical problem sizes efficiently and are easily parallelized to scale with the elastic resources available in the cloud. The fully homomorphic scheme, Fhe-Bloom, realizes a comprehensive outsourcing to the cloud, while the partially homomorphic scheme, Phe-Bloom, trades a slight relaxation of security guarantees against performance improvements by at least three orders of magnitude.
Enhancing electric vehicle infrastructure by forecasting the availability of charging stations can boost the attractiveness of electric vehicles. The transportation sector plays a crucial role in battling climate change. The majority of available prediction algorithms either achieve poor accuracy or predict the availability at certain points in time in the future. Both of these situations are not ideal and may potentially hinder the model’s applicability to real-world situations. This paper provides a new model for estimating the charging duration of charging events in real time, which may be used to estimate the waiting time of users at fully occupied charging stations. First, the prediction is made using the random forest regressor (RF), and then the prediction is enhanced utilizing the findings of the RF model and real-time information of the currently occurring charging events. We compare the proposed method with the RF model, which is the approach’s foundational model, and the best-performing prediction model of the light gradient boosting machine (LightGBM). Here, we make use of historical information of charging events gathered from 2079 charging stations across Germany’s 4602 fast-charging connectors. To reduce data bias, we specifically simulate prediction requests for 30% of the charging events with various characteristics that were not trained with the model. Overall, the suggested method performs better than both the RF and the LightGBM. In addition, the model’s structure is adaptable and can incorporate real-time information on charging events.
Micromobility service systems have recently appeared in urban areas worldwide. Although e-bike and e-scooter services have been operating for some time now, their characteristics have only recently been analyzed in more detail. In particular, the influence on the existing transportation services is not well understood. This study proposes a framework to gather data, infer micromobility trips, deduce their characteristics, and assess their relation to a public transportation network. We validate our approach by comparing it to similar approaches in the literature and applying it to data of over a year from the city of Aachen. We find hints at the recreational role of e-scooters and a larger commuting role for e-bikes. We show that micromobility services in particular are used in situations where public transportation is not a viable alternative, hence often complementing the available services, and competing with public transportation in other areas. This ambivalent relationship between micromobility and public transportation emphasizes the need for appropriate regulations and policies to ensure the sustainability of micromobility services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.