We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial gaussian pumping beam, and subjected to timedelayed feedback. The gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assumming a continous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use two approaches based on either an order parameter equation, describing the dynamics of the localized structure in the vicinity of the Hopf bifurcation or an overdamped dynamics of a particle in a potential well generated by the inhomogeneity. In the later approach, the time-delayed feedback acts as a driving force.
We consider the formation of temporal localized structures or Kerr comb generation in a microresonator with inhomogeneities. We show that the introduction of even a small inhomogeneity in the injected beam widens the stability region of localized solutions. The homoclinic snaking bifurcation associated with the formation of localized structures and clusters of them with decaying oscillatory tails is constructed. Furthermore, the inhomogeneity allows not only to control the position of localized solutions, but strongly affects their stability domains. In particular, a new stability domain of a single peak localized structure appears outside of the region of multistability between multiple peaks of localized states. We identify a regime of larger detuning, where localized structures do not exhibit a snaking behavior. In this regime, the effect of inhomogeneities on localized solutions is far more complex: they can act either attracting or repelling. We identify the pitchfork bifurcation responsible for this transition. Finally, we use a potential well approach to determine the force exerted by the inhomogeneity and summarize with a full analysis of the parameter regime where localized structures and therefore Kerr comb generation exist and analyze how this regime changes in the presence of an inhomogeneity.
We investigate the spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity surface-emitting laser with saturable absorption subjected to time-delayed optical feedback. Using a combination of analytical, numerical, and path continuation methods, we analyze the bifurcation structure of stationary and moving cavity solitons and identify two different types of traveling localized solutions, corresponding to slow and fast motion. We show that the delay impacts both stationary and moving solutions either causing drifting and wiggling dynamics of initially stationary cavity solitons or leading to stabilization of intrinsically moving solutions. Finally, we demonstrate that the fast cavity solitons can be associated with a lateral mode-locking regime in a broad-area laser with a single longitudinal mode.
The Brusselator reaction–diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator model. By using numerical continuation methods in two spatial dimensions, we establish a bifurcation diagram showing the emergence of localized spots. We characterize the transition from a single spot to an extended pattern in the form of squares. In the second part, we incorporate delayed feedback control and show that delayed feedback can induce a spontaneous motion of both localized and periodic dissipative structures. We characterize this motion by estimating the threshold and the velocity of the moving dissipative structures. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.