Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. As experimental characterization of SPs is costly, prediction algorithms are applied to predict them from sequence data. However, existing methods are unable to detect all known types of SPs. We introduce SignalP 6.0, the first model capable of detecting all five SP types. Additionally, the model accurately identifies the positions of regions within SPs, revealing the defining biochemical properties that underlie the function of SPs in vivo. Results show that SignalP 6.0 has improved prediction performance, and is the first model to be applicable to metagenomic data.
SignalP 6.0 is available at https://services.healthtech.dtu.dk/service.php?SignalP-6.0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.