Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone ( amh ) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii . By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy ). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy . Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii , displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii . However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.
Albacore (Thunnus alalunga) support an economically valuable global fishery, but surprisingly little is known about the population structure of this highly migratory species. Physical tagging data suggest that Albacore from the North and South Pacific Ocean are separate stocks, but results from previous genetic studies did not support this two stock hypothesis. In addition, observed biological differences among juveniles suggest that there may be population substructure in the North Pacific. We used double‐digest restriction site‐associated DNA sequencing to assess population structure among 308 Albacore caught in 12 sample areas across the Pacific Ocean (10 North, 2 South). Since Albacore are highly migratory and spawning areas are unknown, sample groups were not assumed to be equivalent to populations and the genetic data were analyzed iteratively. We tested for putatively adaptive differences among groups and for genetic variation associated with sex. Results indicated that Albacore in the North and South Pacific can be distinguished using 84 putatively adaptive loci, but not using the remaining 12,788 presumed neutral sites. However, two individuals likely represent F1 hybrids between the North and South Pacific populations, and 43 Albacore potentially exhibit lower degrees of mixed ancestry. In addition, four or five cross‐hemisphere migrants were potentially identified. No genetic evidence was found for population substructure within the North Pacific, and no loci appeared to distinguish males from females. Potential functions for the putatively adaptive loci were identified, but an annotated Albacore genome is required for further exploration. Future research should try to locate spawning areas so that life history, demography, and genetic population structure can be linked and spatiotemporal patterns can be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.