Background-Antiarrhythmic management of atrial fibrillation (AF) remains a major clinical challenge. Mechanismbased approaches to AF therapy are sought to increase effectiveness and to provide individualized patient care. K 2P 3.1 (TASK-1 [tandem of P domains in a weak inward-rectifying K + channel-related acid-sensitive K + channel-1]) 2-poredomain K + (K 2P ) channels have been implicated in action potential regulation in animal models. However, their role in the pathophysiology and treatment of paroxysmal and chronic patients with AF is unknown. Methods and Results-Right and left atrial tissue was obtained from patients with paroxysmal or chronic AF and from control subjects in sinus rhythm. Ion channel expression was analyzed by quantitative real-time polymerase chain reaction and Western blot. Membrane currents and action potentials were recorded using voltage-and current-clamp techniques. K 2P 3.1 subunits exhibited predominantly atrial expression, and atrial K 2P 3.1 transcript levels were highest among functional K 2P channels. K 2P 3.1 mRNA and protein levels were increased in chronic AF. Enhancement of corresponding currents in the right atrium resulted in shortened action potential duration at 90% of repolarization (APD 90 ) compared with patients in sinus rhythm. In contrast, K 2P 3.1 expression was not significantly affected in subjects with paroxysmal AF. Pharmacological K 2P 3.1 inhibition prolonged APD 90 in atrial myocytes from patients with chronic AF to values observed among control subjects in sinus rhythm. Conclusions-Enhancement of atrium-selective K 2P 3.1 currents contributes to APD shortening in patients with chronic AF, and K 2P 3.1 channel inhibition reverses AF-related APD shortening. These results highlight the potential of K 2P 3.1 as a novel drug target for mechanism-based AF therapy.
Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling.Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human.Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections.Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial “super-hub” Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.