Principal component analysis (PCA) and factor analysis (FA) are variable reduction techniques used to represent a set of observed variables in terms of a smaller number of variables. While PCA and FA are similar along several dimensions (e.g., extraction of common components/factors), researchers often fail to recognize that these techniques achieve different goals and can produce significantly different results. We conduct a comprehensive review of the use of PCA and FA in accounting research. We offer guidelines on programming PCA and FA in SAS/Stata and emphasize the importance of implementation techniques as well as the disclosure choices made when utilizing these methodologies. Furthermore, we present intuitive, practical examples highlighting the differences between the techniques and provide suggestions for researchers considering the use of these procedures. Finally, based on our review, we provide recommendations, observations, notes, and citations to the literature, regarding the implementation of PCA and FA in accounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.