One of the most common causes of traffic accidents is human error. One such factor involves the drowsy drivers that do not focus on the road before them. Driver drowsiness often occurs due to fatigue in long distances or long durations of driving. The signs of a drowsy driver may be detected based on one out of three types of tests; i.e., performance test, physiological test, and behavioural test. Since the physiological and performance tests are quite difficult and expensive to implement, the behavioural test is a good choice to use for detecting early drowsiness. Behaviour-based driver drowsiness detection has been one of the hot research topics in recent years and is still increasingly developing. There are many approaches for behavioural driver drowsiness detection, such as Neural Networks, Multi Layer Perceptron, Support Vector Machine, Vander Lugt Correlator, Haar Cascade, and Eye Aspect Ratio. Therefore, this study aims to conduct a systematic literature review to elaborate on the development and research trends regarding driver drowsiness detection. We hope to provide a good overview of the current state of research and offer the research potential in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.