GenoMEL, comprising major familial melanoma research groups from North America, Europe, Asia, and Australia has created the largest familial melanoma sample yet available to characterize mutations in the high-risk melanoma susceptibility genes CDKN2A/alternate reading frames (ARF), which encodes p16 and p14ARF, and CDK4 and to evaluate their relationship with pancreatic cancer (PC), neural system tumors (NST), and uveal melanoma (UM). This study included 466 families (2,137 patients) with at least three melanoma patients from 17 GenoMEL centers. Overall, 41% (n = 190) of families had mutations; most involved p16 (n = 178). Mutations in CDK4 (n = 5) and ARF (n = 7) occurred at similar frequencies (2-3%). There were striking differences in mutations across geographic locales. The proportion of families with the most frequent founder mutation(s) of each locale differed significantly across the seven regions (P = 0.0009). Single founder CDKN2A mutations were predominant in Sweden (p.R112_L113insR, 92% of family's mutations) and the Netherlands (c.225_243del19, 90% of family's mutations). France, Spain, and Italy had the same most frequent mutation (p.G101W). Similarly, Australia and United Kingdom had the same most common mutations (p.M53I, c.IVS2-105A>G, p.R24P, and p.L32P). As reported previously, there was a strong association between PC and CDKN2A mutations (P < 0.0001). This relationship differed by mutation. In contrast, there was little evidence for an association between CDKN2A mutations and NST (P = 0.52) or UM (P = 0.25). There was a marginally significant association between NST and ARF (P = 0.05). However, this particular evaluation had low power and requires confirmation. This GenoMEL study provides the most extensive characterization of mutations in high-risk melanoma susceptibility genes in families with three or more melanoma patients yet available. (Cancer Res 2006; 66(20): 9818-28)
Approximately 5% to 10% of melanoma may be hereditary in nature, and about 2% of melanoma can be specifically attributed to pathogenic germline mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A). To appropriately identify the small proportion of patients who benefit most from referral to a genetics specialist for consideration of genetic testing for CDKN2A, we have reviewed available published studies of CDKN2A mutation analysis in cohorts with invasive, cutaneous melanoma and found variability in the rate of CDKN2A mutations based on geography, ethnicity, and the type of study and eligibility criteria used. Except in regions of high melanoma incidence, such as Australia, we found higher rates of CDKN2A positivity in individuals with 3 or more primary invasive melanomas and/or families with at least one invasive melanoma and two or more other diagnoses of invasive melanoma and/or pancreatic cancer among first- or second-degree relatives on the same side of the family. The work summarized in this review should help identify individuals who are appropriate candidates for referral for genetic consultation and possible testing.
Classification of breast cancer into molecular subtypes maybe important for the proper selection of therapy, as tumors with seemingly similar histopathological features can have strikingly different clinical outcomes. Herein, we report the development of a molecular subtyping profile (BluePrint), that enables rationalization in patient selection for either chemotherapy or endocrine therapy prescription. An 80-Gene Molecular Subtyping Profile (BluePrint) was developed using 200 breast cancer patient specimens and confirmed on four independent validation cohorts (n = 784). Additionally, the profile was tested as a predictor of chemotherapy response in 133 breast cancer patients, treated with T/FAC neoadjuvant chemotherapy. BluePrint classification of a patient cohort that was treated with neoadjuvant chemotherapy (n = 133) shows improved distribution of pathological Complete Response (pCR), among molecular subgroups compared with local pathology: 56% of the patients had a pCR in the Basal-type subgroup, 3% in the MammaPrint Low-risk, Luminal-type subgroup, 11% in the MammaPrint High-risk, Luminal-type subgroup, and 50% in the HER2-type subgroup. The group of genes identifying Luminal-type breast cancer is highly enriched for genes having an Estrogen Receptor binding site proximal to the promoter-region, suggesting that these genes are direct targets of the Estrogen Receptor. Implementation of this profile may improve the clinical management of breast cancer patients, by enabling the selection of patients who are most likely to benefit from either chemotherapy or from endocrine therapy.
Purpose: We report the largest study to date analyzing the risk of cancers other than melanoma in melanoma families positive for the same CDKN2A mutation. Experimental Design: We studied family members of 22 families positive for the p16-Leiden founder mutation who had attended a surveillance clinic or were their close relatives. Within this cohort, observed and expected rates of cancer were computed by mutation status consisting of 221 (proven plus obligate) carriers, 639 (proven plus obligate) noncarriers, and 668 first-degree relatives whose carrier risk was estimated from the relationship to known carriers and the age and melanoma status of that person and their relatives. Results: Our analysis shows a relative risk (RR) of cancer other than melanoma and nonmelanoma skin cancer of 4.4 [95% confidence interval (95% CI), 3.3-5.6], predominantly attributable to the increased risk for pancreatic cancer (RR, 46.6; 95% CI, 24.7-76.4), but also for other cancers. We provide substantial proof for pancreatic cancer being a key component of the p16-Leiden phenotype. Inclusion of this cancer in a penetrance analysis leads to an estimated RR of pancreatic cancer for mutation carriers of 47.8 (95% CI,. Conclusions: This study shows clear evidence of increased risk of cancers other than melanoma in CDKN2A families carrying the p16-Leiden mutation. Further research is necessary to determine if similar risks apply to families with CDKN2A mutations other than p16-Leiden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.