IntroductionSystemic sclerosis (SSc) is an autoimmune disease characterised by inflammation, fibrosis and vasculopathy. Digital ulcers (DUs) are a frequent manifestation of vasculopathy in patients with SSc. Despite recent advances in pharmacological treatments, DU still have major health and economic implications. As there is currently no proven therapeutic strategy to promote DU healing, new treatments are urgently needed. Mesenchymal stem or stromal cells (MSCs) may provide a novel therapy for DU in SSc, because of their immunomodulatory and vasculoregenerative properties. Allogeneic MSC therapy involves functionally competent MSCs from healthy donors and may be used as ‘off-the-shelf’ available treatment. This study will evaluate whether allogeneic MSC therapy is a safe and potentially efficacious treatment for DU of SSc.Methods and analysisThe MANUS (Mesenchymal stromal cells for Angiogenesis and Neovascularization in digital Ulcers of Systemic Sclerosis) Trial is a double-blind randomised placebo-controlled trial. 20 patients with SSc with refractory DU will be randomised to receive eight intramuscular injections with either placebo or 50*106 MSCs. The primary outcome is the toxicity of the treatment at 12 weeks after administration. Secondary outcomes include (serious) adverse events, number and time to healing of DU, pain, reported hand function, quality of life and SSc disease activity. We will also evaluate changes in nailfold capillaroscopy pattern, as well as biochemical parameters and biomarkers in peripheral blood and skin biopsies. Follow-up visits will be scheduled at 48 hours and 2, 4, 8, 12, 24 and 52 weeks post-treatment. If the results confirm safety, feasibility and potential efficacy, a large multicentre randomised controlled trial with longer follow-up will be initiated focusing on efficacy.Ethics and disseminationThe study has been approved by the Dutch Central Committee on Research Concerning Human Subjects (protocol no: NL51705.000.15). The results will be disseminated through patient associations and conventional scientific channels.Trial registration numberNCT03211793; Pre-results.
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
If our results indicate that intramuscular allogeneic BM-MSC therapy for CLI is safe and potentially effective, this will have important consequences for treatment of patients with CLI. A large multicenter clinical trial with longer follow-up focusing on hard end points should then be initiated to confirm these findings.
Autologous hematopoietic stem cell transplantation (aHSCT) for autoimmune diseases has been applied for two decades as a treatment for refractory patients with progressive disease. The rationale behind aHSCT is that high-dose immunosuppression eliminates autoreactive T and B cells, thereby resetting the immune system. Post-aHSCT the cytotoxic CD8+ T cells normalize via clonal expansion due to homeostatic proliferation within a few months. CD4+ T cells recover primarily via thymopoiesis resulting in complete renewal of the T cell receptor (TCR) repertoire which requires years or never normalize completely. The increase in naïve T cells inducing immune tolerance, renewal of especially the regulatory TCR repertoire, and a less pro-inflammatory functional profile of the CD4+ T cells seem essential for successful immune reconstitution inducing long-term remission. There is currently a knowledge gap regarding the immune response in tissue sites post-aHSCT, as well as disease-specific factors that may determine remission or relapse. Future studies on lymphocyte dynamics and function may pave the way for optimized conditioning regimens with a more individualized approach.
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease with a high mortality and morbidity. While progress has been made in terms of identifying high-risk patients and implementing new treatment strategies, therapeutic options remain limited. In the past few decades, various cellular therapies have emerged, which have been studied in SSc and other conditions. Here, we provide a comprehensive review of currently available cellular therapies and critically assess their merit as disease-modifying treatment for SSc. Currently, hematopoietic stem cell transplantation is the only cellular therapy that has demonstrated clinical effects on the immune system, neoangiogenesis, and fibrosis. Robust mechanistic studies as well as clinical trials are essential to move the field forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.