Heart failure is a major health risk, and with limited availability of donor organs, there is an increasing need for developing cardiac assist devices (CADs). Mock circulatory loops (MCL) are an important in-vitro test platform for CAD’s performance assessment and optimisation. The MCL is a lumped parameter model constructed out of hydraulic and mechanical components aiming to simulate the native cardiovascular system (CVS) as closely as possible. Further development merged MCLs and numerical circulatory models to improve flexibility and accuracy of the system; commonly known as hybrid MCLs. A total of 128 MCLs were identified in a literature research until 25 September 2020. It was found that the complexity of the MCLs rose over the years, recent MCLs are not only capable of mimicking the healthy and pathological conditions, but also implemented cerebral, renal and coronary circulations and autoregulatory responses. Moreover, the development of anatomical models made flow visualisation studies possible. Mechanical MCLs showed excellent controllability and repeatability, however, often the CVS was overly simplified or lacked autoregulatory responses. In numerical MCLs the CVS is represented with a higher order of lumped parameters compared to mechanical test rigs, however, complex physiological aspects are often simplified. In hybrid MCLs complex physiological aspects are implemented in the hydraulic part of the system, whilst the numerical model represents parts of the CVS that are too difficult to represent by mechanical components per se. This review aims to describe the advances, limitations and future directions of the three types of MCLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.