Methane is a powerful greenhouse gas, of which most is produced by microorganisms in a process called methanogenesis. One environment where methanogenic microorganisms occur is the deep biosphere. The deep biosphere environment comprises a variety of ecosystem settings; marine habitats such as subseafloor sediments, rock pore volumes within subseafloor basalts, and terrestrial settings such as sedimentary rocks and crystalline bedrock fracture networks. Microbial methane formed in these environments influence the biological, chemical, and geological cycles of the upper crust, and may seep out of the deep into the atmosphere. This review focuses on the process of microbial methanogenesis and methane oxidation in the relatively underexplored deep crystalline-bedrock hosted subsurface, as several works in recent years have shown that microbial production and consumption occur in this energy-poor rock-fracture-hosted environment. These recent findings are summarized along with techniques to study the source and origins of methane in the terrestrial crust. Future prospects for exploration of these processes are proposed to combine geochemical and microbial techniques to determine whether microbial methanogenesis is a ubiquitous phenomenon in the crystalline crust across space and time. This will aid in determining whether microbial methane in the globally vast deep rock-hosted biosphere environment is a significant contributor to the global methane reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.