BackgroundGlobally, many children fail to meet the World Health Organization’s physical activity and sedentary behaviour guidelines. Schools are an ideal setting to intervene, yet despite many interventions in this setting, success when delivered under real-world conditions or at scale is limited. This systematic review aims to i) identify which implementation models are used in school-based physical activity effectiveness, dissemination, and/or implementation trials, and ii) identify factors associated with the adoption, implementation and sustainability of school-based physical activity interventions in real-world settings.MethodsThe review followed PRISMA guidelines and included a systematic search of seven databases from January 1st, 2000 to July 31st, 2018: MEDLINE, EMBASE, CINAHL, SPORTDiscus, PsycINFO, CENTRAL, and ERIC. A forward citation search of included studies using Google Scholar was performed on the 21st of January 2019 including articles published until the end of 2018. Study inclusion criteria: (i) a primary outcome to increase physical activity and/or decrease sedentary behaviour among school-aged children and/or adolescents; (ii) intervention delivery within school settings, (iii) use of implementation models to plan or interpret study results; and (iv) interventions delivered under real-world conditions. Exclusion criteria: (i) efficacy trials; (ii) studies applying or testing school-based physical activity policies, and; (iii) studies targeting special schools or pre-school and/or kindergarten aged children.Results27 papers comprising 17 unique interventions were included. Fourteen implementation models (e.g., RE-AIM, Rogers’ Diffusion of Innovations, Precede Proceed model), were applied across 27 papers. Implementation models were mostly used to interpret results (n = 9), for planning evaluation and interpreting results (n = 8), for planning evaluation (n = 6), for intervention design (n = 4), or for a combination of designing the intervention and interpreting results (n = 3). We identified 269 factors related to barriers (n = 93) and facilitators (n = 176) for the adoption (n = 7 studies), implementation (n = 14 studies) and sustainability (n = 7 studies) of interventions.ConclusionsImplementation model use was predominately centered on the interpretation of results and analyses, with few examples of use across all study phases as a planning tool and to understand results. This lack of implementation models applied may explain the limited success of interventions when delivered under real-world conditions or at scale.Trial registrationPROSPERO (CRD42018099836).
BackgroundReducing sitting time as well as increasing physical activity in inactive people is beneficial for their health. This paper investigates the effectiveness of the European Fans in Training (EuroFIT) programme to improve physical activity and sedentary time in male football fans, delivered through the professional football setting.Methods and findingsA total of 1,113 men aged 30–65 with self-reported body mass index (BMI) ≥27 kg/m2 took part in a randomised controlled trial in 15 professional football clubs in England, the Netherlands, Norway, and Portugal. Recruitment was between September 19, 2015, and February 2, 2016. Participants consented to study procedures and provided usable activity monitor baseline data. They were randomised, stratified by club, to either the EuroFIT intervention or a 12-month waiting list comparison group. Follow-up measurement was post-programme and 12 months after baseline. EuroFIT is a 12-week, group-based programme delivered by coaches in football club stadia in 12 weekly 90-minute sessions. Weekly sessions aimed to improve physical activity, sedentary time, and diet and maintain changes long term. A pocket-worn device (SitFIT) allowed self-monitoring of sedentary time and daily steps, and a game-based app (MatchFIT) encouraged between-session social support. Primary outcome (objectively measured sedentary time and physical activity) measurements were obtained for 83% and 85% of intervention and comparison participants. Intention-to-treat analyses showed a baseline-adjusted mean difference in sedentary time at 12 months of −1.6 minutes/day (97.5% confidence interval [CI], −14.3–11.0; p = 0.77) and in step counts of 678 steps/day (97.5% CI, 309–1.048; p < 0.001) in favor of the intervention. There were significant improvements in diet, weight, well-being, self-esteem, vitality, and biomarkers of cardiometabolic health in favor of the intervention group, but not in quality of life. There was a 0.95 probability of EuroFIT being cost-effective compared with the comparison group if society is willing to pay £1.50 per extra step/day, a maximum probability of 0.61 if society is willing to pay £1,800 per minute less sedentary time/day, and 0.13 probability if society is willing to pay £30,000 per quality-adjusted life-year (QALY). It was not possible to blind participants to group allocation. Men attracted to the programme already had quite high levels of physical activity at baseline (8,372 steps/day), which may have limited room for improvement. Although participants came from across the socioeconomic spectrum, a majority were well educated and in paid work. There was an increase in recent injuries and in upper and lower joint pain scores post-programme. In addition, although the five-level EuroQoL questionnaire (EQ-5D-5L) is now the preferred measure for cost-effectiveness analyses across Europe, baseline scores were high (0.93), suggesting a ceiling effect for QALYs.ConclusionParticipation in EuroFIT led to improvements in physical activity, diet, body weight, and biomarkers of...
Background: Promising health interventions tested in pilot studies will only achieve population-wide impact if they are implemented at scale across communities and health systems. Scaling up effective health interventions is vital as not doing so denies the community the most effective services and programmes. However, there remains a paucity of practical tools to assess the suitability of health interventions for scale-up. The Intervention Scalability Assessment Tool (ISAT) was developed to support policy-makers and practitioners to make systematic assessments of the suitability of health interventions for scale-up. Methods: The ISAT was developed over three stages; the first stage involved a literature review to identify similar tools and frameworks that could be used to guide scalability assessments, and expert input to develop draft ISAT content. In the second stage, the draft ISAT tool was tested with end users. The third stage involved revising and re-testing the ISAT with end users to further refine the language and structure of the final ISAT. Results: A variety of information and sources of evidence should be used to complete the ISAT. The ISAT consists of three parts. Part A: 'setting the scene' requires consideration of the context in which the intervention is being considered for scale-up and consists of five domains, as follows: (1) the problem; (2) the intervention; (3) strategic/ political context; (4) evidence of effectiveness; and (5) intervention costs and benefits. Part B asks users to assess the potential implementation and scale-up requirements within five domains, namely (1) fidelity and adaptation; (2) reach and acceptability; (3) delivery setting and workforce; (4) implementation infrastructure; and (5) sustainability. Part C generates a graphical representation of the strengths and weaknesses of the readiness of the proposed intervention for scale-up. Users are also prompted for a recommendation as to whether the intervention (1) is recommended for scale-up, (2) is promising but needs further information before scaling up, or (3) does not yet merit scale-up. Conclusion: The ISAT fills an important gap in applied scalability assessment and can become a critical decision support tool for policy-makers and practitioners when selecting health interventions for scale-up. Although the ISAT is designed to be a health policy and practitioner tool, it can also be used by researchers in the design of research to fill important evidence gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.