Peripheral tissue injury-induced central sensitization may result from the altered biochemical properties of spinal dorsal horn. However, peripheral nerve injury-induced modification of genes in the dorsal horn remains largely unknown. Here we identified strong changes of 14 channels, 25 receptors and 42 signal transduction related molecules in Sprague-Dawley rat dorsal spinal cord 14 days after peripheral axotomy by cDNA microarray. Twenty-nine genes were further confirmed by semiquantitative RT-PCR, Northern blotting, in situ hybridization and immunohistochemistry. These regulated genes included Ca2+ channel alpha1E and alpha2/delta1 subunits, alpha subunits for Na+ channel 1 and 6, Na+ channel beta subunit, AMAP receptor GluR3 and 4, GABAA receptor alpha5 subunit, nicotinic acetylcholine receptor alpha5 and beta2 subunits, PKC alpha, betaI and delta isozymes, JNK1-3, ERK2-3, p38 MAPK and BatK and Lyn tyrosine-protein kinases, indicating that several signal transduction pathways were activated in dorsal spinal cord by peripheral nerve injury. These results demonstrate that peripheral nerve injury causes phenotypic changes in spinal dorsal horn. Increases in Ca2+ channel alpha2/delta1 subunit, GABAA receptor alpha5 subunit, Na+ channels and nicotinic acetylcholine receptors in both dorsal spinal cord and dorsal root ganglia indicate their potential roles in neuropathic pain control.
The mRNA for the immediate early gene Arc/Arg3.1 is induced by strong synaptic activation and is rapidly transported into dendrites, where it localizes at active synaptic sites. NMDA receptor activation is critical for mRNA localization at active synapses, but downstream events that mediate localization are not known. The patterns of synaptic activity that induce mRNA localization also trigger a dramatic polymerization of actin in the activated dendritic lamina and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) throughout the postsynaptic cytoplasm. The local polymerization of actin in the activated dendritic lamina is of particular interest because it occurs in the same dendritic domains in which newly synthesized Arc/Arg3.1 mRNA localizes. Here, we explore the role of activity-induced alterations in the actin network and mitogen-activated protein (MAP) kinase activation in Arc/Arg3.1 mRNA localization. We show that actin polymerization induced by high-frequency stimulation is blocked by local inhibition of Rho kinase, and Arc/Arg3.1 mRNA localization is abrogated in the region of Rho kinase blockade. Local application of latrunculin B, which binds to actin monomers and inhibits actin polymerization, also blocked the targeting of Arc/Arg3.1 mRNA to activated synaptic sites. Local application of the MAP kinase kinase inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-amino-phenylthio]butadiene) blocked ERK phosphorylation, and also blocked Arc/Arg3.1 mRNA localization. Our results indicate that the reorganization of the actin cytoskeletal network in conjunction with MAP kinase activation is required for targeting newly synthesized Arc/Arg3.1 mRNA to activated synaptic sites.
There is increasing evidence that long-lasting forms of activity-dependent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), require local synthesis of proteins within dendrites. Identifying novel dendritic mRNAs and determining how their distribution and translation is regulated is a high priority. We demonstrate here that the mRNA for the elongation factor 1 alpha (EF1alpha) is present in vivo in the dendrites of neurons that exhibit LTP and LTD, and that its translation is locally regulated. The subcellular distribution of EF1alpha mRNA differs from any of the dendritic mRNAs that have been described previously. In the hippocampus, the mRNA is highly expressed in cell bodies and is also concentrated in the zone of termination of commissural/associational afferents in the inner molecular layer, suggesting that mRNA localization is in some way related to the distribution of different types of synapses. Nevertheless, the localization of EF1alpha mRNA is not altered by prolonged periods of synaptic activation that are sufficient to cause a dramatic redistribution of Arc mRNA. Local application of the metabotropic glutamate receptor agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) led to dramatic increases in immunostaining for EF1alpha protein in dendrites, and treatment of hippocampal slices with DHPG, which is known to induce LTD, led to increases in EF1alpha protein levels. Both responses were blocked by the protein synthesis inhibitor anisomycin. In contrast, stimulation of the perforant path using patterns of stimulation that induce LTP caused rapid increases of immunostaining for EF1alpha protein in the activated dendritic lamina, but these increases were not blocked by anisomycin or rapamycin. The findings suggest that local synthesis of EF1alpha protein may be important for the synaptic mechanisms that underlie protein synthesis-dependent LTD.
Different physiological and behavioral events activate transcription of Arc/Arg3.1 in neurons in vivo, but the signal transduction pathways that mediate induction in particular situations remain to be defined. Here, we explore the relationships between induction of Arc/Arg3.1 transcription in dentate granule cells in vivo and activation of mitogen-activated protein (MAP) kinase as measured by extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. We show that ERK1/2 phosphorylation is strongly induced in dentate granule cells within minutes after induction of perforant path long-term potentiation (LTP). Phospho-ERK staining appears in nuclei within minutes after stimulation commences, and ERK phosphorylation returns to control levels within 60 min. Electroconvulsive seizures, which strongly induce prolonged Arc/Arg3.1 transcription in dentate granule cells, induced ERK1/2 phosphorylation in granule cells that returned to control levels within 30 min. Following 30, 60, and 120 min of exploration in a novel complex environment, Arc/Arg3.1 transcription was activated in many more granule cells than stained positively for p-ERK at all time points. Although Arc/Arg3.1 transcription was induced in most pyramidal neurons in CA1 following exploration, very few pyramidal neurons exhibited nuclear p-ERK1/2 staining. Local delivery of U0126 during the induction of perforant path LTP blocked transcriptional activation of Arc/Arg3.1 in a small region near the injection site and blocked Arc/Arg3.1 protein expression over a wider region. Our results indicate that activation of Arc/Arg3.1 transcription in dentate granule cells in vivo is mediated in part by MAP kinase activation, but other signaling pathways also contribute, especially in the case of Arc/Arg3.1 induction in response to experience.
Stimulation paradigms that induce perforant path long-term potentiation (LTP) initiate phosphorylation of ERK1/2 and induce expression of a variety of immediate early genes (IEGs). These events are thought to be critical components of the mechanism for establishing the changes in synaptic efficacy that endure for hours or longer. Here we show that in mice, perforant path LTP can be induced using a standard protocol (repeated trains at 250 Hz), without accompanying increases in immunostaining for p-ERK1/2 or increased in expression of representative IEGs (Arc and c-fos). Signaling pathways capable of inducing ERK phosphorylation and IEG transcription are intact in mice because ERK phosphorylation differs strikingly in awake versus anesthetized mice, and IEG expression is strongly induced by electroconvulsive seizures. In pursuing the reasons for the lack of induction with LTP, we found that in rats, one of the stimulation paradigms used to induce perforant path LTP (trains at 250 Hz) also does not activate MAP kinase or induce IEG expression, despite the fact that the LTP induced by 250 Hz stimulation requires NMDA receptor activation and persists for hours. These findings indicate that there are different forms of perforant path LTP, one of which does not require MAP kinase activation or IEG induction. Moreover, these data demonstrate that different LTP induction paradigms do not have identical molecular consequences, which may account for certain discrepancies between previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.