Acoustic emission is a nondestructive testing technology based on the propagation of transient elastic waves captured by acoustic emission sensors. The acoustic emission signal depends not only on the distance and quality of the propagation path of the transient elastic wave but also on the sensitivity and frequency bandwidth of the receiving sensor that converts the transient elastic wave into a voltage signal. The frequency range of damage signals in concrete materials is generally in the low-frequency band. If high-frequency sensors are used, the low sensitivity to low-frequency signals will cause measurement errors, while the bandwidth of general commercial acoustic emission sensors is relatively narrow. Therefore, a high-sensitivity, low-frequency acoustic emission sensor is proposed, whose bandwidth is almost four times that of commercial sensors. Based on the customized sensor, we quantitatively analyzed the influence of propagation distance on the characteristic parameters of acoustic waves propagating in concrete. The results show that the different propagation modes of acoustic waves in concrete have different attenuation with the propagation distance, related to the position relationship between the acoustic source and the sensor and the propagation path and path quality. This result gives us a better understanding of the propagation mechanism of acoustic emission signals in concrete materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.