Elevated atmospheric CO 2 concentration (eCO 2 ) has been the most important driving factor and characteristic of climate change. To clarify the effects of eCO 2 on the soil microbes and on the concurrent status of soil carbon and nitrogen, an experiment was conducted in a typical summer maize field based on a 10-year mini FACE (Free Air Carbon Dioxide Enrichment) system in North China. Both rhizospheric and bulk soils were collected for measurement. The soil microbial carbon (MBC), nitrogen (MBN), and soil mineral N were measured at two stages. Characteristics of microbes were assayed for both rhizospheric soil and bulk soils at the key stage. We examined the plasmid copy numbers, diversities, and community structures of bacteria (in terms of 16s rRNA), fungi (in terms of ITS-internal transcribed spacer), ammonia oxidizing bacteria (AOB) and denitrifiers including nirK, nirS, and nosZ using the Miseq sequencing technique. Results showed that under eCO 2 conditions, both MBC and MBN in rhizospheric soil were increased significantly. The quantity of ITS was increased in the eCO 2 treatment compared with that in the ambient CO 2 (aCO 2 ) treatment, while the quantity of 16s rRNA in rhizospheric soil showed decrease in the rhizospheric soil in the eCO 2 treatment. ECO 2 changed the relative abundance of microbes in terms of compositional proportion of some orders or genera particularly in the rhizospheric soil-n particular, Chaetomium increased for ITS, Subgroups 4 and 6 increased for 16s rRNA, Nitrosospira decreased for AOB, and some genera showed increase for nirS, nirK, and nosZ. Nitrate N was the main inorganic nitrogen form at the tasseling stage and both quantities of AOB and denitrifiers, as well as the nosZ/(nirS+nirK) showed an increase under eCO 2 conditions particularly in the rhizospheric soil. The Nitrosospira decreased in abundance under eCO 2 conditions in the rhizospheric soil and some genera of denitrifiers also showed differences in abundance. ECO 2 did not change the diversities of microbes significantly. In general, results suggested that 10 years of eCO 2 did affect the active component of C and N pools (such as MBC and MBN) and both the quantities and relative abundance of microbes which are involved in carbon and nitrogen cycling, possibly due to the differences in both the quantities and component of substrate for relevant microbes in the rhizospheric soils.
The elevated atmospheric CO2 concentration (eCO2) is expected to increase the labile C input to the soil, which may stimulate microbial activity and soil N2O emissions derived from nitrification and denitrification. However, few studies studied the effect of eCO2 on N2O emissions from maize field under the free-air CO2 enrichment (FACE) conditions in the warm temperate zone. Here, we report a study conducted during the 12th summer maize season under long-term eCO2, aiming to investigate the effect of eCO2 on N2O emissions. Moreover, we tested zero and conventional N fertilization treatments, with maize being grown under either eCO2 or ambient CO2 (aCO2). We hypothesized that N2O emissions would be increased under eCO2 due to changes in soil labile C and mineral N derived from C-deposition, and that the increase would be larger when eCO2 was combined with conventional N fertilization. We also measured the activities of some soil extracellular enzymes, which could reflect soil C status. The results showed that, under eCO2, seasonal N2O and CO2 emissions increased by 12.4–15.6% (p < 0.1) and 13.8–18.5% (p < 0.05), respectively. N fertilization significantly increased the seasonal emissions of N2O and CO2 by 33.1–36.9% and 17.1–21.8%, respectively. Furthermore, the combination of eCO2 and N fertilization increased the intensity of soil N2O and CO2 emissions. The marginal significant increase in N2O emissions under eCO2 was mostly due to the lower soil water regime after fertilization in the study year. Dissolved organic C (DOC) and microbial biomass C (MBC) concentration showed a significant increase at most major stages, particularly at the tasseling stage during the summer maize growth period under eCO2. In contrast, soil mineral N showed a significant decrease under eCO2 particularly in the rhizospheric soils. The activities of C-related soil extracellular enzymes were significantly higher under eCO2, particularly at the tasseling stage, which coincided with concurrent increased DOC and MBC under eCO2. We conclude that eCO2 increases N2O emissions, and causes a higher increase when combined with N fertilization, but the increase extent of N2O emissions was influenced by environmental factors, especially by soil water, to a great extent. We highlighted the urgent need to monitor long-term N2O emissions and N2O production pathways in various hydrothermal regimes under eCO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.