In this study, we present an organic field-effect transistor floating-gate memory using polysilicon (poly-Si) as a charge trapping layer. The memory device is fabricated on a N+–Si/SiO2 substrate. Poly-Si, polymethylmethacrylate, and pentacene are used as a floating-gate layer, tunneling layer, and active layer, respectively. The device shows bidirectional storage characteristics under the action of programming/erasing (P/E) operation due to the supplied electrons and holes in the channel and the bidirectional charge trapping characteristic of the poly-Si floating-gate. The carrier mobility and switching current ratio (I on/I off ratio) of the device with a tunneling layer thickness of 85 nm are 0.01 cm 2 · V − 1 · s − 1 and 102, respectively. A large memory window of 9.28 V can be obtained under a P/E voltage of ±60 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.