Improving the anti-carbon deposition and anti-sintering ability under the premise of maintaining high catalytic activity is the core issue of Ni-based catalysts applied in CO methanation reactions. To address this issue, a La0.75A0.25NiO3/SiO2 (A = Ce, Sr, Sm, and Ca) catalyst is prepared via a citric acid complexation method. XRD results show that the substituted elements (Sr, Sm, and Ca) enter the LaNiO3 lattice and partially replace the A-site element La. The reduced Ni0 is beneficial to improve the medium temperature activity of the catalyst. The substitution of different elements produces different electronic effects that significantly affect the size of the Ni particles and the interaction between Ni and La2O3. The catalyst with doped Ca2+ as the A-site substituted element demonstrates better adsorption, storage, and migration capabilities for oxygen due to the lattice distortion that easily produces oxygen vacancies. Catalysts doped with Sr, Sm, and Ca as the A-site substituted element produce La2O2CO3 after the reactions, which plays a role in eliminating carbon deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.