Nanoparticles of titanium dioxide co-doped with nitrogen and iron (III) were first prepared using the homogeneous precipitation-hydrothermal method. The structure and properties of the co-doped were studied by XRD, XPS, Raman, FL, and UV-diffuse reflectance spectra. By analyzing the structures and photocatalytic activities of the undoped and nitrogen and/or Fe 3+ -doped TiO 2 under ultraviolet and visible light irradiation, the probable mechanism of co-doped particles was investigated. It is presumed that the nitrogen and Fe 3+ ion doping induced the formation of new states closed to the valence band and conduction band, respectively. The co-operation of the nitrogen and Fe 3+ ion leads to the much narrowing of the band gap and greatly improves the photocatalytic activity in the visible light region. Meanwhile, the co-doping can also promote the separation of the photogenerated electrons and holes to accelerate the transmission of photocurrent carrier. The photocatalyst co-doped with nitrogen and 0.5% Fe 3+ shows the best photocatalytic activity, the degradation efficiencies of which were improved by 75% and 5% under visible and ultraviolet irradiation, respectively, compared with the pure titania.
This study reports a simple and economic method to modify Degussa P25 with a vacuum activated procedure, resulting in its high photo-activity and photosensitivity, which suggests this method to be a starting point for the extension of its application to photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.