The mammalian spermatozoon has many cellular compartments, such as head and tail, permitting it to interact with the female reproductive tract and fertilize the egg. It acquires this fertilizing potential during transit through the epididymis, which secretes proteins that coat different sperm domains. Optimal levels of these proteins provide the spermatozoon with its ability to move to, bind to, fuse with, and penetrate the egg; otherwise male infertility results. As few human epididymal proteins have been characterized, this work was performed to generate a database of human epididymal sperm-located proteins involved in maturation. Two-dimensional gel electrophoresis of epididymal tissue and luminal fluid proteins, followed by identification using MALDI-TOF/MS or MALDI-TOF/TOF, revealed over a thousand spots in gels comprising 745 abundant nonstructural proteins, 408 in luminal fluids, of which 207 were present on spermatozoa. Antibodies raised to 619 recombinant or synthetic peptides, used in Western blots, histological sections, and washed sperm preparations to confirm antibody quality and protein expression, indicated their regional location in the epididymal epithelium and highly specific locations on washed functional spermatozoa. Sperm function tests suggested the role of some proteins in motility and protection against oxidative attack. A large database of these proteins, characterized by size, pI, chromosomal location, and function, was given a unified terminology reflecting their sperm domain location. These novel, secreted human epididymal proteins are potential targets for a posttesticular contraceptive acting to provide rapid, reversible, functional sterility in men and they are also biomarkers that could be used in noninvasive assessments of male fertility. Molecular & Cellular Proteomics 9:2517-2528, 2010.There are two major challenges for population and reproductive health. First, rapid global population expansion, which will see the world population reach 9 billion by 2045 (http:// www.census.gov/ipc/www/idb/worldpopgraph.php). Second, infertility is suffered by around 180 million couples, comprising about 10%-15% worldwide and over 25% in some countries, of which 40%-50% is related to the male (http://www.who.int/ reproductivehealth/publications/infertility/progress_63/en/ index.html). Natural fertilization requires tightly coordinated and sequential sperm functions (1), from maturation in the epididymis (2) and survival in the female tract to fusion with the ovum (3). Fertility and infertility are both sides of the same reproductive coin so that understanding one can provide clues to the other. On the one hand, the widespread application to infertile couples of artificial reproductive technology, which bypasses natural fertilization mechanisms, has diverted attention from understanding the biological causes of the infertility for its cure, to that of overcoming the symptom of childlessness. On the other, controlling population growth by contraceptive means is currently only available to large ...
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and spermmilieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of develop-
Mammalian Gene Collection (MGC) verified over 9000 human full-ORF genes and FLJ Program reported 21 243 cDNAs of which 14 409 were unique ones and 5416 seemed to be protein-coding. The pity is that epididymis cDNA library was missing in their sequencing target list. Epididymis is a very important male accessory sex organ for sperm maturation and storage. Fully differentiated spermatozoa left from testis acquire their motility and capacity for fertilization via interactions with the epididymal epithelium duct lumen during passage through this convoluted duct. Here, we report that 20 000 clones from a healthy male epididymis cDNA library have been sequenced. The sequencing data provided 8234 known sequences and 650 unknown cDNA fragments. Hundred and six of 650 unknown cDNA clone inserts were randomly selected for fully sequencing. There were 25 unknown unique sequences and 19 released but unreported sequences came out. By northern blot analysis, four sequences randomly selected from the 19 released sequences with no known function showed positive mRNA signals in epididymis and testis. The signals for three of six from those unknown group showed as epididymis abundant in a region-specific manner but not in the testis and other tissues tested. All the sequencing data will be available on the website www.sdscli.com.
Background Ischemia-reperfusion (I/R) leads to kidney injury. Renal I/R frequently occurs in kidney transplantations and acute kidney injuries. Recent studies reported that miR-30 stimulated immune responses and reductions in renal I/R related to anti-inflammation. Our study investigated the effects of miR-30c-5p on renal I/R and the relationship among miR-30c-5p, renal I/R, and macrophages. Material/Methods Sprague Dawley rats received intravenous tail injections of miR-30c-5p agomir. Then a renal I/R model were established by removing the left kidney and clamping the right renal artery. Serum creatinine (Cr) was analyzed using a serum Cr assay kit, and serum neutrophil gelatinase associated lipocalin (NGAL) was measured using a NGAL ELISA (enzyme-linked immunosorbent assay) kit. Rat kidney tissues were analyzed using hematoxylin and eosin staining. THP-1 cells treated with miR-30c-5p agomir and miR-30c-5p antagomir were measured with quantitative reverse transcription-polymerase chain reaction. Protein levels were analyzed by western blot. Results MiR-30c-5p agomir reduced serum Cr, serum NGAL, and renal I/R injury. MiR-30c-5p agomir inhibited the expression of CD86 (M1 macrophage marker), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α) and promoted the expression of CD206 (M2 macrophage marker), interleukin (IL)-4, and IL-10 in rat kidneys. MiR-30c-5p agomir reduced the expression of CD86 and iNOS, and increased the expression of CD206 and IL-10 in THP-1 cells. Conclusions We preliminarily demonstrated that miR-30c-5p agomir might decrease renal I/R through transformation of M1 macrophages to M2 macrophages and resulted in changes in inflammatory cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.