ABSTRACT. Biologists and scientists can use the data from Alzheimer's disease (AD) gene expression microarrays to mine AD disease-related genes. Because of disadvantages such as small sample sizes, high dimensionality, and a high level of noise, it is difficult to obtain accurate and meaningful biological information from gene expression profiles. In this paper, we present a novel approach for utilizing AD microarray data to identify the morbigenous genes. The Fisher score, a classical feature selection method, is utilized to evaluate the importance of each gene. Genes with a large between-classes variance and small withinclass variance are selected as candidate morbigenous genes. The results using an AD dataset show that the proposed approach is effective for gene selection. Satisfactory accuracy can be achieved by using only a small number of selected genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.