Faced with severe operating conditions, rolling bearings tend to be one of the most vulnerable components in mechanical systems. Due to the requirements of economic efficiency and reliability, effective fault diagnosis methods for rolling bearings have long been a hot research topic of rotary machinery fields. However, traditional methods such as support vector machine (SVM) and backpropagation neural network (BP-NN) which are composed of shallow structures trap into a dilemma when further improving their accuracies. Aiming to overcome shortcomings of shallow structures, a novel hierarchical algorithm based on stacked LSTM (long short-term memory) is proposed in this text. Without any preprocessing operation or manual feature extraction, the proposed method constructs a framework of end-to-end fault diagnosis system for rolling bearings. Beneficial from the memorize-forget mechanism of LSTM, features inherent in raw temporal signals are extracted hierarchically and automatically by stacking LSTM. A series of experiments demonstrate that the proposed model can not only achieve up to 99% accuracy but also outperform some state-of-the-art intelligent fault diagnosis methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.