Optical transmission range and phase matching (PM) conditions for second harmonic generation (SHG) of Er3+:YSGG and CO2 laser in indium doped GaSe:In(0.1, 1.23, 2.32 mass%) are studied in comparison with these in pure and sulfur doped GaSe:S(0.09, 0.5, 2.2, 3 mass%) crystals. No changes in transparency curve are found in GaSe crystals up to 2.32 mass% indium content, but as small change as 0.18 degrees in PM angle for 2.79 microm Er3+:YSGG laser SHG and approximately 0.06 degrees for 9.58 microm CO2 laser emission line SHG are detected. PM properties of the crystals are evaluated as a function of temperature over the range from -165 to 230 degrees C. The value of dtheta/dT, the change in PM angle with variation of temperature, is found to be very small for GaSe:In crystals. While for SHG of Er3+:YSGG laser, dtheta/dT =22"/1 degrees C only, it is as small as -4.9"/1 degrees C for that of CO2 laser radiation. Linear variation of PM angle with temperature increasing is an indicator of absence of crystals structure transformation within temperature range from -165 to 230 degrees C. Thus, application of GaSe:In solid solutions in high average power nonlinear optical systems seems to be prospective.
The optical properties of p-type GaSe and mixed GaSe(1-x)S(x), x=0.04, 0.023, 0.090, 0.133, 0.175, 0.216, 0.256, 0.362, 0.369, and 0.412, crystals were studied to reveal the potentials for phase matching and frequency conversion. Comparative experiment on Er3+:YSGG and CO2 laser SHG at identical experimental conditions is carried out at room temperature. Any change in polytype structure of GaSe1(1-x)S(x) was not found.
Modeling and experimental study on phase matching of second harmonic generation in different color HgGa2S4 crystals are carried out. Using the known Sellmeier equations, the dispersion relation with weighting proportionally to short-wavelength boundary of the crystal transparency band is proposed. Optimal dispersion relations and phase-matched conditions for different color HgGa2S4 crystals can be specified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.