Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, considerable attention has been paid on its epidemiology and clinical characteristics in children patients. However, it is also crucial for clinicians to summarize and investigate the co-infection of SARS-CoV-2 in children. We retrospectively reviewed the clinical manifestations, laboratory findings, and imaging characteristics of COVID-19 patients in co-infection group (CI, n = 27) and single infection group (SI, n = 54). Samples were tested for multiple pathogens. A high incidence (27/81, 33%) of co-infection in children with COVID-19 was revealed. The most frequent co-infected pathogen was mycoplasma pneumoniae (MP, 20/81, 25%), followed by virus (6/81, 7%), and bacteria (4/81, 5%). No significant difference in clinical characteristics, laboratory examinations, or hospital stay was observed between the patients with co-infections and those with monomicrobial, only lower in white blood cell counts (CI: 5.54 ± 0.36 vs SI: 7.38 ± 0.37, P = .002), neutrophil counts (CI: 2.20 ± 0.20 vs SI: 2.92 ± 0.23, P = .024) and lymphocyte counts (CI: 2.72 ± 0.024 vs SI: 3.87 ± 0.28, P = .006). Compared with the patients with monomicrobial, chest imaging of those with co-infections showed consolidation in more cases (CI: 29.6% vs SI: 11.1%, P = .038) and duration of positive in nucleic acid was shorter (CI: 6.69 ± 0.82 vs SI: 9.69 ± 0.74, P = .015). Co-infection was relatively common in children with COVID-19, almost 1/3 had co-infection, most commonly caused by MP. Co-infection did not cause a significant exacerbation in clinical manifestations.
Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.