Dynamic behavior of micro water droplet condensed on a lotus leaf with two-tier roughness is studied. Under laboratory environment, the contact angle of the micro droplet on single micro papilla increases smoothly from 80 deg to 160 deg during the growth of condensed water. The best-known "self-clean" phenomenon, will be lost. A striking observation is the out-of-plane jumping relay of condensed droplets triggered by falling droplets, as well as its sustained speed obtained in continuous jumping relays, enhance the automatic removal of dropwise condensation without the help from any external force. The surface tension energy dissipation is the main reason controlling the critical size of jumping droplet and its onset velocity of rebounding.Comment: 14 pages, 8 figure
Although realizing dewetting transitions of droplets spontaneously on solid textured surfaces is quite challenging, it has become a key research topic in many practical applications that require highly efficient removal of liquid. Despite intensive efforts over the past few decades, due to impalement of vapor pockets inducing strong pinning of the contact lines, how to realize the self-removal of small droplets trapped in the textures remains an urgent problem. We report an in situ spontaneous dewetting transition of condensed droplets occurring on pillared surfaces with two-tier roughness, from the valleys to the tops of the pillars, owing to the nanotexture-enhanced superhydrophobicity, as well as the topology of the micropillars. Three wetting transition modes are observed. It is found that a further decreased Laplace pressure on the top side of the individual droplets accounts for such a surprising transition and self-removal of condensed water. An explicit model is constructed, which quite effectively predicts the Laplace pressure of droplets trapped by the textures. Our model also reveals that the critical size of the droplet for transition scales as the spacing of the micropillars. These findings are expected to be crucial to a fundamental understanding, as well as a remarkable strategy to guide the fabrication, of optimum super-water-repellant surfaces.
Sliding behaviors of liquid droplets on solid surfaces are among the fundamental results of wettability. To remedy the lack of quantitative correlation between sliding angle and roughness of the surface, which is known to be effective at enhancing wettability, we report in this paper the observation that the onset of water droplets sliding under gravity on inclined micropillar-structured hydrophobic surfaces always starts with detachment of the rear contact lines of the droplets from the pillar tops. We also establish an explicit analytical model, based on the observed mechanism, by which the sliding angle is fully determined by the fraction of water-solid interface area, droplet volume, and Young's contact angle. This model gives predictions of sliding angles that agree well with experimental measurements.
Due to its innate instability, the degradation of black phosphorus (BP) with oxygen and moisture was considered the obstacle for its application in ambient conditions. Here, a friction force reduced by about 50% at the degraded area of the BP nanosheets was expressly observed using atomic force microscopy due to the produced phosphorus oxides during degradation. Energy-dispersive spectrometer mapping analyses corroborated the localized concentration of oxygen on the degraded BP flake surface where friction reduction was observed. Water absorption was discovered to be essential for the degraded characteristic as well as the friction reduction behavior of BP sheets. The combination of water molecules as well as the resulting chemical groups (P-OH bonds) that are formed on the oxidized surface may account for the friction reduction of degraded BP flakes. It is indicated that, besides its layered structure, the ambient degradation of BP significantly favors its lubrication behavior.
In modern electric equipment, especially electric vehicles, inverter control systems can lead to complex shaft voltages and bearing currents. Within an electric motor, many parts have electrical failure problems, and among which bearings are the most sensitive and vulnerable components. In recent years, electrical failures in bearing have been frequently reported in electric vehicles, and the electrical failure of bearings has become a key issue that restricts the lifetime of all-electric motor-based power systems in a broader sense. The purpose of this review is to provide a comprehensive overview of the bearing premature failure in the mechanical systems exposed in an electrical environment represented by electric vehicles. The electrical environments in which bearing works including the different components and the origins of the shaft voltages and bearing currents, as well as the typical modes of electrical bearing failure including various topographical damages and lubrication failures, have been discussed. The fundamental influence mechanisms of voltage/current on the friction/ lubrication properties have been summarized and analyzed, and corresponding countermeasures have been proposed. Finally, a brief introduction to the key technical flaws in the current researches will be made and the future outlook of frontier directions will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.