Regular inspection and maintenance can ensure safe working conditions of transport pipelines without leakage and damage. Pipeline-climbing robots can be used for rapid inspection of pipelines, effectively reducing labor costs and time consumption. For the annular pipelines outside spherical tanks, the special distribution and installation form presents more high obstacles, and puts forward higher requirements for the robot’s climbing performance and obstacle-surmounting ability. An elastic obstacle-surmounting pipeline-climbing robot with composite wheels is proposed in this paper. The designed elastic shock-absorbing suspension mechanisms and composite wheels were designed to increase the stability and obstacle-surmounting ability of the robot. The adjustable robot frame and rotating joint mechanisms allowed the robot to adapt to pipelines of different diameters and radians. Force analysis and simulation of obstacle surmounting by the robot were performed. Experiments were conducted on a 110-mm diameter pipeline to test the payload performance and obstacle-surmounting ability of the robot. With its elastic shock-absorbing suspension mechanisms, the pipeline-climbing robot could carry a 30 kg payload and stably climb the pipeline. The maximum height of obstacles surmounted by the composite wheels of the robot was 20 mm. In the process of surmounting obstacles, the velocity and inclination angle of the robot could remain relatively stable. This novel composite wheels and mechanisms can improve the performance of the pipeline-climbing robot and solve the problem of surmounting high obstacles. By carrying various equipment and instruments, the robot can promote the automated maintenance and inspection of complex pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.