This study proposed a novel bio-carbonation method to recycle water-based drill cutting (WDC) to prepare samples, which contains reactive magnesia (MgO) cement (RMC), ground granulated blast furnace slag (GGBS), and fly ash (FA), with the adoption of microbially induced carbonate precipitation (MICP). Through the investigation of some parameters (i.e., GGBS content, FA content, and curing time), the microstructures and strength development of bio-carbonated RMC-based WDC samples were evaluated. The preliminary results revealed that bio-carbonated RMC-based WDC samples outperformed the control group (i.e., without bio-carbonation) in terms of the 28-day strength (i.e., 9.8 MPa versus 4.4 MPa), which can be assigned to formation of the carbonates, that is, hydrated magnesium carbonates (HMCs). Further, in addition to the identification of HMCs, the microstructural analysis also revealed a continuous carbonate network due to the presence of HMCs, which accounts for the strength boost of samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.