We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for~60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (ΔΨ m ). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-x L overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-x L blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the deathinducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of ΔΨ m . Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-x L , converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-x L . In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).
One great challenge in the development of lithium ion batteries is to simultaneously achieve high power and large energy capacity at fast charge and discharge rates for several minutes to seconds. Here we show that nitrogen- or boron-doped graphene can be used as a promising anode for high-power and high-energy lithium ion batteries under high-rate charge and discharge conditions. The doped graphene shows a high reversible capacity of >1040 mAh g(-1) at a low rate of 50 mA g(-1). More importantly, it can be quickly charged and discharged in a very short time of 1 h to several tens of seconds together with high-rate capability and excellent long-term cyclability. For example, a very high capacity of ∼199 and 235 mAh g(-1) was obtained for the N-doped graphene and B-doped graphene at 25 A g(-1) (about 30 s to full charge). We believe that the unique two-dimensional structure, disordered surface morphology, heteroatomic defects, better electrode/electrolyte wettability, increased intersheet distance, improved electrical conductivity, and thermal stability of the doped graphene are beneficial to rapid surface Li(+) absorption and ultrafast Li(+) diffusion and electron transport, and thus make the doped materials superior to those of pristine chemically derived graphene and other carbonaceous materials.
We previously reported on MetaBAT, an automated metagenome binning software tool to reconstruct single genomes from microbial communities for subsequent analyses of uncultivated microbial species. MetaBAT has become one of the most popular binning tools largely due to its computational efficiency and ease of use, especially in binning experiments with a large number of samples and a large assembly. MetaBAT requires users to choose parameters to fine-tune its sensitivity and specificity. If those parameters are not chosen properly, binning accuracy can suffer, especially on assemblies of poor quality. Here, we developed MetaBAT 2 to overcome this problem. MetaBAT 2 uses a new adaptive binning algorithm to eliminate manual parameter tuning. We also performed extensive software engineering optimization to increase both computational and memory efficiency. Comparing MetaBAT 2 to alternative software tools on over 100 real world metagenome assemblies shows superior accuracy and computing speed. Binning a typical metagenome assembly takes only a few minutes on a single commodity workstation. We therefore recommend the community adopts MetaBAT 2 for their metagenome binning experiments. MetaBAT 2 is open source software and available at https://bitbucket.org/berkeleylab/metabat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.