A simple iterative model is introduced quantifying the interaction of saturable gain and nonlinear loss in a mode-locked laser cavity. The resulting geometrical description of the laser dynamics completely characterizes the generic multi-pulsing instability observed in experiments. The model further shows that the onset of multipulsing can be preceded by periodic and chaotic transitions as recently confirmed in theory and experiment. The results suggest ways to engineer the nonlinear losses in the cavity in order to achieve an enhanced performance.
We theoretically demonstrate that in a laser cavity mode-locked by a set of waveplates and passive polarizer, the energy performance can be increased by incorporating a second set of waveplates and polarizer in the cavity. The two nonlinear transmission functions acting in combination can be engineered so as to suppress the multi-pulsing instability responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. In a single parameter sweep, the energy is demonstrated to double. It is anticipated that further engineering and optimization of the transmission functions by tuning the eight waveplates, fiber birefringence, two polarizers and two lengths of transmission fiber can lead to further significant increases. Moreover, the analysis suggests a general design and engineering principle that can potentially realize the goal of making fiber based lasers directly competitive with solid state devices. The technique is feasible and easy to implement without requiring a new cavity design paradigm.
Abstract-In this paper, we propose and design a chalcogenide (As2S3) based slot waveguide taper with exponentially decreasing dispersion profile to realize high degree pulse compression of low power chirped solitons. Based on the waveguide taper designed, self-similar pulse compression of fundamental solitons and chirped 2-soliton breather are both investigated numerically. With self-similar pulse compression scheme, a 1 ps input pulse is compressed to 81.5 fs in 6 cm propagation. By using 2-soliton breather pulses, a 1 ps chirped pulse is compressed to 80.3 fs in just 2.54 cm. This is the first demonstration of the feasibility of high degree nonlinear pulse compression in As2S3-based slot waveguide taper.Index Terms-Self-similar pulse compression, fundamental soliton, 2-soliton breather, As2S3-based slot waveguide taper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.