Crocins are the most important active ingredient found in Crocus sativus, a well-known "plant gold". The glycosyltransferase-catalyzed glycosylation of crocetin is the last step of biosynthesizing crocins and contributes to their structural diversity. Crocin biosynthesis is now hampered by the lack of efficient glycosyltransferases with activity toward crocetin. In this study, two microbial glycosyltransferases (Bs-GT and Bc-GTA) were successfully mined based on the comprehensive analysis of the PSPG motif and the N-terminal motif of the target plant-derived UGT75L6 and Cs-GT2. Bs-GT from Bacillus subtilis 168, an enzyme with a higher activity of glycosylation toward crocetin than that of Bc-GTA, was characterized. The efficient synthesis of crocins from crocetin catalyzed by microbial GT (Bs-GT) was first reported with a high molecular conversion rate of 81.9%, resulting in the production of 476.8 mg/L of crocins. The glycosylation of crocetin on its carboxyl groups by Bs-GT specifically produced crocin-5 and crocin-3, the important rare crocins.
Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.