We present a 256 × 256 in-memory compute (IMC) core designed and fabricated in 14-nm CMOS technology with backend-integrated multi-level phase change memory (PCM). It comprises 256 linearized current-controlled oscillator (CCO)-based A/D converters (ADCs) at a compact 4-µm pitch and a local digital processing unit (LDPU) performing affine scaling and ReLU operations. A frequency-linearization technique for CCO is introduced, which increases the maximum Manuscript
Natural compounds derived from plants have been an important source of numerous clinically useful anticancer agents. Nevertheless, limited studies indicate that xanthohumol (XN), a major prenylated flavonoid in hop plants (Humulus lupulus), may possess anticarcinogenic properties. The purpose of the present study was to clarify the antitumorigenic effects and the underlying mechanism of XN on breast cancer in vivo and in vitro. A 4T1 breast tumor mouse model was used in the present study to investigate XN suppression of tumor growth as detected by tumorigenicity assays in vivo. In addition, in vitro studies revealed that XN significantly decreased cell viability, induced G0/G1 cell cycle arrest and apoptosis in MCF-7 and MDA-MB-231 cells, as confirmed by an MTT assay, flow cytometry and western blot analysis, indicating anticarcinogenic activity of XN against breast cancer. Furthermore, immunohistochemistry was performed to confirm the inactivation of the Notch signaling pathway, Notch 1 and Ki-67, in vivo; consistently, XN caused decreased activation of the Notch signaling pathway and apoptotic regulators B-cell lymphoma-2 (Bcl-2), Bcl-extra large and caspase 3, as determined by western blot analysis in vitro. This study suggests that XN may potentially be useful as a chemopreventive agent during breast hyperplasia and carcinogenesis, acting via the regulation of Notch associated apoptotic regulators in vivo and in vitro.
The carriers’ transportation between layers of two-dimensional (2D) perovskites is inhibited by dielectric confinement. Here, for the first time, we employ a femtosecond laser to introduce ultrafast shock pressure in the range of 0~15.45 GPa to reduce dielectric confinement by modulating the structure and exciton dynamics in a perovskite single crystal (PSCs), e.g. (F-PEA)2PbI4 (4-fluorophenethylammonium, F-PEA). The density functional theory (DFT) simulation and experimental results show that the inorganic framework distortion results in a bandgap reduction. It was found that the exciton-optical phonon coupling and free excitons (FEs) binding energy are minimized at 2.75 GPa shock pressure due to a reduction in dielectric confinement. The stability testing under various harsh light and humid thermal conditions shows that femtosecond laser shocking improves the stability of (F-PEA)2PbI4 PSCs. Femtosecond laser shock processing provides a new approach for regulating the structure and enhancing halide perovskite properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.